SPRACT6A october   2020  – march 2023 F29H850TU , F29H850TU , F29H859TU-Q1 , F29H859TU-Q1 , TMS320F2800132 , TMS320F2800132 , TMS320F2800133 , TMS320F2800133 , TMS320F2800135 , TMS320F2800135 , TMS320F2800137 , TMS320F2800137 , TMS320F2800152-Q1 , TMS320F2800152-Q1 , TMS320F2800153-Q1 , TMS320F2800153-Q1 , TMS320F2800154-Q1 , TMS320F2800154-Q1 , TMS320F2800155 , TMS320F2800155 , TMS320F2800155-Q1 , TMS320F2800155-Q1 , TMS320F2800156-Q1 , TMS320F2800156-Q1 , TMS320F2800157 , TMS320F2800157 , TMS320F2800157-Q1 , TMS320F2800157-Q1 , TMS320F280021 , TMS320F280021 , TMS320F280021-Q1 , TMS320F280021-Q1 , TMS320F280023 , TMS320F280023 , TMS320F280023-Q1 , TMS320F280023-Q1 , TMS320F280023C , TMS320F280023C , TMS320F280025 , TMS320F280025 , TMS320F280025-Q1 , TMS320F280025-Q1 , TMS320F280025C , TMS320F280025C , TMS320F280025C-Q1 , TMS320F280025C-Q1 , TMS320F280033 , TMS320F280033 , TMS320F280034 , TMS320F280034 , TMS320F280034-Q1 , TMS320F280034-Q1 , TMS320F280036-Q1 , TMS320F280036-Q1 , TMS320F280036C-Q1 , TMS320F280036C-Q1 , TMS320F280037 , TMS320F280037 , TMS320F280037-Q1 , TMS320F280037-Q1 , TMS320F280037C , TMS320F280037C , TMS320F280037C-Q1 , TMS320F280037C-Q1 , TMS320F280038-Q1 , TMS320F280038-Q1 , TMS320F280038C-Q1 , TMS320F280038C-Q1 , TMS320F280039 , TMS320F280039 , TMS320F280039-Q1 , TMS320F280039-Q1 , TMS320F280039C , TMS320F280039C , TMS320F280039C-Q1 , TMS320F280039C-Q1 , TMS320F280040-Q1 , TMS320F280040-Q1 , TMS320F280040C-Q1 , TMS320F280040C-Q1 , TMS320F280041 , TMS320F280041 , TMS320F280041-Q1 , TMS320F280041-Q1 , TMS320F280041C , TMS320F280041C , TMS320F280041C-Q1 , TMS320F280041C-Q1 , TMS320F280045 , TMS320F280045 , TMS320F280048-Q1 , TMS320F280048-Q1 , TMS320F280048C-Q1 , TMS320F280048C-Q1 , TMS320F280049 , TMS320F280049 , TMS320F280049-Q1 , TMS320F280049-Q1 , TMS320F280049C , TMS320F280049C , TMS320F280049C-Q1 , TMS320F280049C-Q1 , TMS320F28075 , TMS320F28075 , TMS320F28075-Q1 , TMS320F28075-Q1 , TMS320F28076 , TMS320F28076 , TMS320F28374D , TMS320F28374D , TMS320F28374S , TMS320F28374S , TMS320F28375D , TMS320F28375D , TMS320F28375S , TMS320F28375S , TMS320F28375S-Q1 , TMS320F28375S-Q1 , TMS320F28376D , TMS320F28376D , TMS320F28376S , TMS320F28376S , TMS320F28377D , TMS320F28377D , TMS320F28377D-EP , TMS320F28377D-EP , TMS320F28377D-Q1 , TMS320F28377D-Q1 , TMS320F28377S , TMS320F28377S , TMS320F28377S-Q1 , TMS320F28377S-Q1 , TMS320F28378D , TMS320F28378D , TMS320F28378S , TMS320F28378S , TMS320F28379D , TMS320F28379D , TMS320F28379D-Q1 , TMS320F28379D-Q1 , TMS320F28379S , TMS320F28379S , TMS320F28384D , TMS320F28384D , TMS320F28384D-Q1 , TMS320F28384D-Q1 , TMS320F28384S , TMS320F28384S , TMS320F28384S-Q1 , TMS320F28384S-Q1 , TMS320F28386D , TMS320F28386D , TMS320F28386D-Q1 , TMS320F28386D-Q1 , TMS320F28386S , TMS320F28386S , TMS320F28386S-Q1 , TMS320F28386S-Q1 , TMS320F28388D , TMS320F28388D , TMS320F28388S , TMS320F28388S , TMS320F28P650DH , TMS320F28P650DH , TMS320F28P650DK , TMS320F28P650DK , TMS320F28P650SH , TMS320F28P650SH , TMS320F28P650SK , TMS320F28P650SK , TMS320F28P659DH-Q1 , TMS320F28P659DH-Q1 , TMS320F28P659DK-Q1 , TMS320F28P659DK-Q1 , TMS320F28P659SH-Q1 , TMS320F28P659SH-Q1

 

  1.   Abstract
  2.   Trademarks
  3. 1Introduction
    1. 1.1 Mechanism of ADC Input Settling
    2. 1.2 Symptoms of Inadequate Settling
    3. 1.3 Resources
      1. 1.3.1 TINA-TI SPICE-Based Analog Simulation Program
      2. 1.3.2 PSPICE for TI Design and Simulation Tool
      3. 1.3.3 TI Precision Labs - SAR ADC Input Driver Design Series
      4. 1.3.4 Analog Engineer's Calculator
      5. 1.3.5 Related Application Reports
      6. 1.3.6 TINA-TI ADC Input Models
  4. 2Input Settling Design Steps
    1. 2.1 Select the ADC
    2. 2.2 Find the Minimum Op-Amp Bandwidth and RC Filter Ranges
      1. 2.2.1 Select Type
      2. 2.2.2 Resolution
      3. 2.2.3 Csh
      4. 2.2.4 Full-Scale Range
      5. 2.2.5 Acquisition Time
      6. 2.2.6 Outputs
      7. 2.2.7 Math Behind the Calculator
    3. 2.3 Select an Op-Amp
    4. 2.4 Verify the Op-Amp Model
    5. 2.5 Build the ADC Input Model
      1. 2.5.1 Vin
      2. 2.5.2 Voa , Voa_SS, and Verror
      3. 2.5.3 Rs, Cs, and Vcont
      4. 2.5.4 Ch, Ron, and Cp
      5. 2.5.5 S+H Switch, Discharge Switch, tacq, and tdis
    6. 2.6 Refine RC Filter Values Via Simulation
    7. 2.7 Perform Final Simulations
    8. 2.8 Input Design Worksheet
  5. 3Example Circuit Design
    1. 3.1  Select the ADC
    2. 3.2  Find the Minimum Op-Amp Bandwidth and RC Filter Ranges
    3. 3.3  Verify the Op-amp Model
    4. 3.4  Build the ADC Input Model
    5. 3.5  DC Node Analysis
    6. 3.6  Refine RC Filter Values Via Simulation (Part 1)
    7. 3.7  Refine RC Filter Values Via Simulation (Part 2)
    8. 3.8  Refine RC Filter Values Via Simulation (Part 3)
    9. 3.9  Further Refinement
    10. 3.10 Further Simulations
    11. 3.11 Completed Worksheet
  6. 4Working With Existing Circuits or Additional Constraints
    1. 4.1 Existing Circuits
      1. 4.1.1 Brief Overview of Charge Sharing
      2. 4.1.2 Charge Sharing Example
    2. 4.2 Pre-Selected Op-Amp
      1. 4.2.1 Pre-Selected Op-Amp Example
    3. 4.3 Pre-Selected Rs and Cs Values
      1. 4.3.1 Analytical Solution for ADC Acquisition Time
      2. 4.3.2 Example Analytical Solution for ADC Acquisition Time
  7. 5Summary
  8. 6References
  9. 7Revision History

Select an Op-Amp

An appropriate op-amp next needs to be selected for the ADC driver circuit. This op-amp needs to meet the minimum unity gain bandwidth reported by the Analog Engineer's calculator.

Additional instructions for selecting the op-amp are given in the TI Precision Labs video: Selecting and Verifying the Driver Amplifier.

Note: If selecting an op-amp to meet the specified requirements is proving difficult, remember that both the settling resolution and the target acquisition time can be relaxed (if the application requirements allow) to relax the driving op-amp requirements. These can both be adjusted on a per-channel basis to allow critical ADC inputs to have optimal performance while axillary ADC inputs can be allowed to have relaxed performance.