SPRACV0A February   2021  – March 2023 F29H850TU , F29H850TU , F29H859TU-Q1 , F29H859TU-Q1 , TMS320F2800132 , TMS320F2800132 , TMS320F2800133 , TMS320F2800133 , TMS320F2800135 , TMS320F2800135 , TMS320F2800137 , TMS320F2800137 , TMS320F2800152-Q1 , TMS320F2800152-Q1 , TMS320F2800153-Q1 , TMS320F2800153-Q1 , TMS320F2800154-Q1 , TMS320F2800154-Q1 , TMS320F2800155 , TMS320F2800155 , TMS320F2800155-Q1 , TMS320F2800155-Q1 , TMS320F2800156-Q1 , TMS320F2800156-Q1 , TMS320F2800157 , TMS320F2800157 , TMS320F2800157-Q1 , TMS320F2800157-Q1 , TMS320F280021 , TMS320F280021 , TMS320F280021-Q1 , TMS320F280021-Q1 , TMS320F280023 , TMS320F280023 , TMS320F280023-Q1 , TMS320F280023-Q1 , TMS320F280023C , TMS320F280023C , TMS320F280025 , TMS320F280025 , TMS320F280025-Q1 , TMS320F280025-Q1 , TMS320F280025C , TMS320F280025C , TMS320F280025C-Q1 , TMS320F280025C-Q1 , TMS320F280033 , TMS320F280033 , TMS320F280034 , TMS320F280034 , TMS320F280034-Q1 , TMS320F280034-Q1 , TMS320F280036-Q1 , TMS320F280036-Q1 , TMS320F280036C-Q1 , TMS320F280036C-Q1 , TMS320F280037 , TMS320F280037 , TMS320F280037-Q1 , TMS320F280037-Q1 , TMS320F280037C , TMS320F280037C , TMS320F280037C-Q1 , TMS320F280037C-Q1 , TMS320F280038-Q1 , TMS320F280038-Q1 , TMS320F280038C-Q1 , TMS320F280038C-Q1 , TMS320F280039 , TMS320F280039 , TMS320F280039-Q1 , TMS320F280039-Q1 , TMS320F280039C , TMS320F280039C , TMS320F280039C-Q1 , TMS320F280039C-Q1 , TMS320F280040-Q1 , TMS320F280040-Q1 , TMS320F280040C-Q1 , TMS320F280040C-Q1 , TMS320F280041 , TMS320F280041 , TMS320F280041-Q1 , TMS320F280041-Q1 , TMS320F280041C , TMS320F280041C , TMS320F280041C-Q1 , TMS320F280041C-Q1 , TMS320F280045 , TMS320F280045 , TMS320F280048-Q1 , TMS320F280048-Q1 , TMS320F280048C-Q1 , TMS320F280048C-Q1 , TMS320F280049 , TMS320F280049 , TMS320F280049-Q1 , TMS320F280049-Q1 , TMS320F280049C , TMS320F280049C , TMS320F280049C-Q1 , TMS320F280049C-Q1 , TMS320F28075 , TMS320F28075 , TMS320F28075-Q1 , TMS320F28075-Q1 , TMS320F28076 , TMS320F28076 , TMS320F28374D , TMS320F28374D , TMS320F28374S , TMS320F28374S , TMS320F28375D , TMS320F28375D , TMS320F28375S , TMS320F28375S , TMS320F28375S-Q1 , TMS320F28375S-Q1 , TMS320F28376D , TMS320F28376D , TMS320F28376S , TMS320F28376S , TMS320F28377D , TMS320F28377D , TMS320F28377D-EP , TMS320F28377D-EP , TMS320F28377D-Q1 , TMS320F28377D-Q1 , TMS320F28377S , TMS320F28377S , TMS320F28377S-Q1 , TMS320F28377S-Q1 , TMS320F28378D , TMS320F28378D , TMS320F28378S , TMS320F28378S , TMS320F28379D , TMS320F28379D , TMS320F28379D-Q1 , TMS320F28379D-Q1 , TMS320F28379S , TMS320F28379S , TMS320F28384D , TMS320F28384D , TMS320F28384D-Q1 , TMS320F28384D-Q1 , TMS320F28384S , TMS320F28384S , TMS320F28384S-Q1 , TMS320F28384S-Q1 , TMS320F28386D , TMS320F28386D , TMS320F28386D-Q1 , TMS320F28386D-Q1 , TMS320F28386S , TMS320F28386S , TMS320F28386S-Q1 , TMS320F28386S-Q1 , TMS320F28388D , TMS320F28388D , TMS320F28388S , TMS320F28388S , TMS320F28P550SJ , TMS320F28P550SJ , TMS320F28P559SJ-Q1 , TMS320F28P559SJ-Q1 , TMS320F28P650DH , TMS320F28P650DH , TMS320F28P650DK , TMS320F28P650DK , TMS320F28P650SH , TMS320F28P650SH , TMS320F28P650SK , TMS320F28P650SK , TMS320F28P659DH-Q1 , TMS320F28P659DH-Q1 , TMS320F28P659DK-Q1 , TMS320F28P659DK-Q1 , TMS320F28P659SH-Q1 , TMS320F28P659SH-Q1

 

  1.   Abstract
  2.   Trademarks
  3. 1Introduction
    1. 1.1 Resources
      1. 1.1.1 TINA-TI SPICE-Based Analog Simulation Program
      2. 1.1.2 PSPICE for TI Design and Simulation Tool
      3. 1.1.3 Application Report: ADC Input Circuit Evaluation for C2000 MCUs
      4. 1.1.4 TI Precision Labs - SAR ADC Input Driver Design Series
      5. 1.1.5 Analog Engineer's Calculator
      6. 1.1.6 TI Precision Labs - Op Amps: Stability Series
        1. 1.1.6.1 Related Application Reports
      7. 1.1.7 TINA-TI ADC Input Models
  4. 2Charge-Sharing Concept
    1. 2.1 Traditional High-Speed ADC Driving Circuits
    2. 2.2 Increased Cs in High-Speed ADC Driving Circuits
    3. 2.3 Very Large Cs in ADC Driving Circuits
    4. 2.4 Charge-Sharing Operation
    5. 2.5 Sample Rate and Source Impedance vs. Tracking Error
    6. 2.6 Analytical Solution to Tracking Error
    7. 2.7 Charge-Sharing in Multiplexed ADCs
    8. 2.8 Charge-Sharing Circuit Advantages
    9. 2.9 Charge-Sharing Circuit Disadvantages
  5. 3Charge Sharing Design Flow
    1. 3.1 Gather Required Information
    2. 3.2 Size Cs
    3. 3.3 Verify Sample Rate, Source Impedance, and Bandwidth
    4. 3.4 Simulate Circuit Settling Performance
    5. 3.5 Input Design Worksheet
  6. 4Charge-Sharing Circuit Simulation Methods
    1. 4.1 Simulation Components
      1. 4.1.1 Vin
      2. 4.1.2 Voa , Voa_SS, and Verror
      3. 4.1.3 Rs, Cs, and Vcont
      4. 4.1.4 Ch, Ron, and Cp
      5. 4.1.5 S+H Switch, Discharge Switch, tacq, and tdis
    2. 4.2 Configure the Simulation Parameters
    3. 4.3 Simulating Op-amp Steady-State Voltage
    4. 4.4 Measure the Settling Error
    5. 4.5 Sweeping Source Resistance
  7. 5Example Circuit Designs
    1. 5.1 Example 1: Determining Maximum Sample Rate
      1. 5.1.1 Example 1: Analysis
      2. 5.1.2 Example 1: Simulation
      3. 5.1.3 Example 1: Worksheet
    2. 5.2 Example 2: Adding an Op-amp
      1. 5.2.1 Example 2: Analysis
      2. 5.2.2 Example 2: Simulation
      3. 5.2.3 Example 2: Worksheet
    3. 5.3 Example 3: Reduced Settling Target
      1. 5.3.1 Example 3: Analysis
      2. 5.3.2 Example 3: Simulation
      3. 5.3.3 Example 3: Worksheet
    4. 5.4 Example 4: Voltage Divider
      1. 5.4.1 Example 4: Analysis
      2. 5.4.2 Example 4: Simulation
      3. 5.4.3 Example 4: Worksheet
  8. 6Summary
  9.   A Appendix: ADC Input Settling Motivation
    1.     A.1 Mechanism of ADC Input Settling
    2.     A.2 Symptoms of Inadequate Settling
      1.      A.2.1 Distortion
      2.      A.2.2 Memory Cross-Talk
      3.      A.2.3 Accuracy
      4.      A.2.4 C2000 ADC Architecture
  10.   References
  11.   Revision History

Simulate Circuit Settling Performance

The formulas above will target N + 1 bit settling performance which can further be divided into N + 2 bits of charge-share error and N + 2 bits of tracking error. In order to compare these targets to simulation results in volts, the absolute settling error target can be calculated as:

Equation 13. Verrmax = Vfs / 2N+1

The settling simulation can then be run to verify that the measured settling error is within this error budget.

For specifics on how to perform the settling simulation with a charge-sharing circuit, see Section 4.