SPRACW5A April   2021  – December 2021 F29H850TU , F29H859TU-Q1 , TMS320F2800132 , TMS320F2800133 , TMS320F2800135 , TMS320F2800137 , TMS320F280021 , TMS320F280021-Q1 , TMS320F280023 , TMS320F280023-Q1 , TMS320F280023C , TMS320F280025 , TMS320F280025-Q1 , TMS320F280025C , TMS320F280025C-Q1 , TMS320F280033 , TMS320F280034 , TMS320F280034-Q1 , TMS320F280036-Q1 , TMS320F280036C-Q1 , TMS320F280037 , TMS320F280037-Q1 , TMS320F280037C , TMS320F280037C-Q1 , TMS320F280038-Q1 , TMS320F280038C-Q1 , TMS320F280039 , TMS320F280039-Q1 , TMS320F280039C , TMS320F280039C-Q1 , TMS320F280040-Q1 , TMS320F280040C-Q1 , TMS320F280041 , TMS320F280041-Q1 , TMS320F280041C , TMS320F280041C-Q1 , TMS320F280045 , TMS320F280048-Q1 , TMS320F280048C-Q1 , TMS320F280049 , TMS320F280049-Q1 , TMS320F280049C , TMS320F280049C-Q1 , TMS320F28075 , TMS320F28075-Q1 , TMS320F28076 , TMS320F28374D , TMS320F28374S , TMS320F28375D , TMS320F28375S , TMS320F28375S-Q1 , TMS320F28376D , TMS320F28376S , TMS320F28377D , TMS320F28377D-EP , TMS320F28377D-Q1 , TMS320F28377S , TMS320F28377S-Q1 , TMS320F28378D , TMS320F28378S , TMS320F28379D , TMS320F28379D-Q1 , TMS320F28379S , TMS320F28384D , TMS320F28384D-Q1 , TMS320F28384S , TMS320F28384S-Q1 , TMS320F28386D , TMS320F28386D-Q1 , TMS320F28386S , TMS320F28386S-Q1 , TMS320F28388D , TMS320F28388S , TMS320F28P650DH , TMS320F28P650DK , TMS320F28P650SH , TMS320F28P650SK , TMS320F28P659DH-Q1 , TMS320F28P659DK-Q1 , TMS320F28P659SH-Q1

 

  1.   Trademarks
  2. 1Introduction
  3. 2ACI Motor Control Benchmark Application
    1. 2.1 Source Code
    2. 2.2 CCS Project for TMS320F28004x
    3. 2.3 CCS Project for TMS320F2837x
    4. 2.4 Validate Application Behavior
    5. 2.5 Benchmarking Methodology
      1. 2.5.1 Details of Benchmarking With Counters
    6. 2.6 ERAD Module for Profiling Application
  4. 3Real-time Benchmark Data Analysis
    1. 3.1 ADC Interrupt Response Latency
    2. 3.2 Peripheral Access
    3. 3.3 TMU (math enhancement) Impact
    4. 3.4 Flash Performance
    5. 3.5 Control Law Accelerator (CLA)
      1. 3.5.1 Full Signal Chain Execution on CLA
        1. 3.5.1.1 CLA ADC Interrupt Response Latency
        2. 3.5.1.2 CLA Peripheral Access
        3. 3.5.1.3 CLA Trigonometric Math Compute
      2. 3.5.2 Offloading Compute to CLA
  5. 4C2000 Value Proposition
    1. 4.1 Efficient Signal Chain Execution With Better Real-Time Response Than Higher Computational MIPS Devices
    2. 4.2 Excellent Real-Time Interrupt Response With Low Latency
    3. 4.3 Tight Peripheral Integration That Scales Applications With Large Number of Peripheral Accesses
    4. 4.4 Best in Class Trigonometric Math Engine
    5. 4.5 Versatile Performance Boosting Compute Engine (CLA)
    6. 4.6 Deterministic Execution due to Low Execution Variance
  6. 5Summary
  7. 6References
  8. 7Revision History

Real-time Benchmark Data Analysis

As described in previous sections, the application has code that profiles different parts of the signal chain and outputs the measured execution in cycle counts to the console. An analysis of these numbers will reveal features of the C2000 architecture that make it optimized for real-time control. The analysis will also reveal the importance of a real-time benchmarking approach to truly assess a system for its real-time performance.

Note: The benchmarking data for TI C2000 devices presented in this chapter was gathered using application released in C2000Ware v3.04.00.00 in 2021 and executed on TMS320F280049C Launchpad and TMS320F28379D Launchpad. The application was executed using Code Composer Studio v10.1.0.00010 and compiled with TI v20.2.1.LTS compiler with optimization set to the recommended level - 2 (Global optimizations) and optimized for speed - 5. The application was compiled in COFF format.