SPRACY9 March   2023 F29H850TU , F29H850TU , TMS320F2800132 , TMS320F2800132 , TMS320F2800133 , TMS320F2800133 , TMS320F2800135 , TMS320F2800135 , TMS320F2800137 , TMS320F2800137 , TMS320F2800152-Q1 , TMS320F2800152-Q1 , TMS320F2800153-Q1 , TMS320F2800153-Q1 , TMS320F2800154-Q1 , TMS320F2800154-Q1 , TMS320F2800155 , TMS320F2800155 , TMS320F2800155-Q1 , TMS320F2800155-Q1 , TMS320F2800156-Q1 , TMS320F2800156-Q1 , TMS320F2800157 , TMS320F2800157 , TMS320F2800157-Q1 , TMS320F2800157-Q1 , TMS320F280021 , TMS320F280021 , TMS320F280021-Q1 , TMS320F280021-Q1 , TMS320F280023 , TMS320F280023 , TMS320F280023-Q1 , TMS320F280023-Q1 , TMS320F280023C , TMS320F280023C , TMS320F280025 , TMS320F280025 , TMS320F280025-Q1 , TMS320F280025-Q1 , TMS320F280025C , TMS320F280025C , TMS320F280025C-Q1 , TMS320F280025C-Q1 , TMS320F280033 , TMS320F280033 , TMS320F280034 , TMS320F280034 , TMS320F280034-Q1 , TMS320F280034-Q1 , TMS320F280036-Q1 , TMS320F280036-Q1 , TMS320F280036C-Q1 , TMS320F280036C-Q1 , TMS320F280037 , TMS320F280037 , TMS320F280037-Q1 , TMS320F280037-Q1 , TMS320F280037C , TMS320F280037C , TMS320F280037C-Q1 , TMS320F280037C-Q1 , TMS320F280038-Q1 , TMS320F280038-Q1 , TMS320F280038C-Q1 , TMS320F280038C-Q1 , TMS320F280039 , TMS320F280039 , TMS320F280039-Q1 , TMS320F280039-Q1 , TMS320F280039C , TMS320F280039C , TMS320F280039C-Q1 , TMS320F280039C-Q1 , TMS320F280040-Q1 , TMS320F280040-Q1 , TMS320F280040C-Q1 , TMS320F280040C-Q1 , TMS320F280041 , TMS320F280041 , TMS320F280041-Q1 , TMS320F280041-Q1 , TMS320F280041C , TMS320F280041C , TMS320F280041C-Q1 , TMS320F280041C-Q1 , TMS320F280045 , TMS320F280045 , TMS320F280048-Q1 , TMS320F280048-Q1 , TMS320F280048C-Q1 , TMS320F280048C-Q1 , TMS320F280049 , TMS320F280049 , TMS320F280049-Q1 , TMS320F280049-Q1 , TMS320F280049C , TMS320F280049C , TMS320F280049C-Q1 , TMS320F280049C-Q1 , TMS320F28075 , TMS320F28075 , TMS320F28075-Q1 , TMS320F28075-Q1 , TMS320F28076 , TMS320F28076 , TMS320F28374D , TMS320F28374D , TMS320F28374S , TMS320F28374S , TMS320F28375D , TMS320F28375D , TMS320F28375S , TMS320F28375S , TMS320F28375S-Q1 , TMS320F28375S-Q1 , TMS320F28376D , TMS320F28376D , TMS320F28376S , TMS320F28376S , TMS320F28377D , TMS320F28377D , TMS320F28377D-EP , TMS320F28377D-EP , TMS320F28377D-Q1 , TMS320F28377D-Q1 , TMS320F28377S , TMS320F28377S , TMS320F28377S-Q1 , TMS320F28377S-Q1 , TMS320F28378D , TMS320F28378D , TMS320F28378S , TMS320F28378S , TMS320F28379D , TMS320F28379D , TMS320F28379D-Q1 , TMS320F28379D-Q1 , TMS320F28379S , TMS320F28379S , TMS320F28384D , TMS320F28384D , TMS320F28384D-Q1 , TMS320F28384D-Q1 , TMS320F28384S , TMS320F28384S , TMS320F28384S-Q1 , TMS320F28384S-Q1 , TMS320F28386D , TMS320F28386D , TMS320F28386D-Q1 , TMS320F28386D-Q1 , TMS320F28386S , TMS320F28386S , TMS320F28386S-Q1 , TMS320F28386S-Q1 , TMS320F28388D , TMS320F28388D , TMS320F28388S , TMS320F28388S , TMS320F28P650DH , TMS320F28P650DH , TMS320F28P650DK , TMS320F28P650DK , TMS320F28P650SH , TMS320F28P650SH , TMS320F28P650SK , TMS320F28P650SK , TMS320F28P659DH-Q1 , TMS320F28P659DH-Q1 , TMS320F28P659DK-Q1 , TMS320F28P659DK-Q1 , TMS320F28P659SH-Q1 , TMS320F28P659SH-Q1

 

  1.   Abstract
  2.   Trademarks
  3. 1Introduction
    1. 1.1 Mechanism of ADC Input Settling
    2. 1.2 Symptoms of Inadequate Settling
      1. 1.2.1 Distortion
      2. 1.2.2 Memory Cross-Talk
      3. 1.2.3 Accuracy
      4. 1.2.4 C2000 ADC Architecture
    3. 1.3 Resources
      1. 1.3.1 TINA-TI SPICE-Based Analog Simulation Program
      2. 1.3.2 PSPICE for TI Design and Simulation Tool
      3. 1.3.3 TI Precision Labs - SAR ADC Input Driver Design Series
      4. 1.3.4 Analog Engineer's Calculator
      5. 1.3.5 Related Application Reports
      6. 1.3.6 PSpice for TI ADC Input Models
  4. 2Input Settling Design Steps
    1. 2.1 Select the ADC
    2. 2.2 Find the Minimum Op-Amp Bandwidth and RC Filter Ranges
      1. 2.2.1 Select Type
      2. 2.2.2 Resolution
      3. 2.2.3 Csh
      4. 2.2.4 Full-Scale Range
      5. 2.2.5 Acquisition Time
      6. 2.2.6 Outputs
      7. 2.2.7 Math Behind the Calculator
    3. 2.3 Select an Op-Amp
    4. 2.4 Verify the Op-Amp Model
    5. 2.5 Build the ADC Input Model
      1. 2.5.1 Vin
      2. 2.5.2 Voa, Voa_SS, and Verror
      3. 2.5.3 Rs, Cs, and Vcont
      4. 2.5.4 Ch, Ron, and Cp
      5. 2.5.5 S+H Switch, Discharge Switch, tacq, and tdis
    6. 2.6 Refine RC Filter Values Via Simulation
    7. 2.7 Perform Final Simulations
    8. 2.8 Input Design Worksheet
  5. 3Example Circuit Design
    1. 3.1  Select the ADC
    2. 3.2  Find the Minimum Op-Amp Bandwidth and RC Filter Ranges
    3. 3.3  Verify the Op-Amp Model
    4. 3.4  Build the ADC Input Model
    5. 3.5  Bias Point Analysis to Determine Voa_ss
    6. 3.6  Transient Analysis to Determine Voa_ss
    7. 3.7  Perform Initial Transient Analysis
    8. 3.8  Iterative Approach to Refine RC Filter Values
    9. 3.9  Perform Final Transient Analysis
    10. 3.10 Perform Final Transient Analysis
    11. 3.11 Further Refinement
    12. 3.12 Further Simulations
    13. 3.13 Completed Worksheet
  6. 4Working With Existing Circuits or Additional Constraints
    1. 4.1 Existing Circuits
      1. 4.1.1 Brief Overview of Charge Sharing
      2. 4.1.2 Charge Sharing Example
      3. 4.1.3 Additional Resources for Charge Sharing
    2. 4.2 Pre-Selected Op-Amp
      1. 4.2.1 Pre-Selected Op-Amp Example
    3. 4.3 Pre-Selected Rs and Cs Values
      1. 4.3.1 Analytical Solution for ADC Acquisition Time
      2. 4.3.2 Example Analytical Solution for ADC Acquisition Time
  7. 5Summary
  8. 6References

Bias Point Analysis to Determine Voa_ss

To finalize the PSpice for TI input model, perform a bias point analysis to determine the steady-state output value for Voa given the specific op-amp being evaluated. Performing a bias point analysis in PSpice for TI requires the creation of a Bias Point simulation profile. Once the simulation profile is created, go to PSpice ➔ Run to perform the analysis. Perform a bias point analysis using the simulation profile shown in Figure 3-5

GUID-FD02726C-10EE-4741-A6BA-0B041B68BEAC-low.jpg Figure 3-5 F280049 Example Bias Point Analysis Simulation Profile

If the bias point analysis does not converge, then a transient analysis must be performed instead to determine the steady-state output value for Voa given the specific op-amp being evaluated. For instructions on how to proceed, close the PSpice for TI simulation window and see Section 3.6. If the bias point analysis converges, close the PSpice for TI simulation window. Using the menu in the upper left of the PSpice for TI schematic capture window, go to PSpice ➔ Bias Points and enable bias voltage display. The bias voltages should appear as shown in Figure 3-6

GUID-99EDCD0A-AFD2-4671-A42B-09C73B625E9F-low.jpg Figure 3-6 F280049 Example Bias Point Analysis Results

The bias voltage of the node at the output of the specific op-amp being evaluated is the steady-state output value for Voa. For OPA350 in this circuit, this procedure gives:

  • Voa = 3.000141 V

Copy this value to the Voa_ss voltage source.

CAUTION: Ensure that the steady-state output value for Voa is accurate to the microvolt (i.e., there are at least six digits following the decimal point). For guidance on how to optimize simulation results, see Section 2.5.

Because the steady-state output value for Voa given the specific op-amp being evaluated is known, skip the next section, Section 3.6, and refer to Section 3.7 for instructions on how to proceed.

Note: The remainder of the application report assumes that the bias point analysis does not converge. If the bias point analysis does not converge, then any transient analysis must skip the initial bias point calculation. Thus, subsequent transient analyzed in this application report skip the initial bias point calculation. However, if the bias point analysis converges, then any transient analysis should not skip the initial bias point calculation. Thus, subsequent transient analysis should not skip the initial bias point calculation. For this reason, results obtained may vary from the results presented in this application report.