SPRACZ0A August   2021  – March 2023 F29H850TU , F29H850TU , F29H859TU-Q1 , F29H859TU-Q1 , TMS320F2800132 , TMS320F2800132 , TMS320F2800133 , TMS320F2800133 , TMS320F2800135 , TMS320F2800135 , TMS320F2800137 , TMS320F2800137 , TMS320F2800152-Q1 , TMS320F2800152-Q1 , TMS320F2800153-Q1 , TMS320F2800153-Q1 , TMS320F2800154-Q1 , TMS320F2800154-Q1 , TMS320F2800155 , TMS320F2800155 , TMS320F2800155-Q1 , TMS320F2800155-Q1 , TMS320F2800156-Q1 , TMS320F2800156-Q1 , TMS320F2800157 , TMS320F2800157 , TMS320F2800157-Q1 , TMS320F2800157-Q1 , TMS320F280021 , TMS320F280021 , TMS320F280021-Q1 , TMS320F280021-Q1 , TMS320F280023 , TMS320F280023 , TMS320F280023-Q1 , TMS320F280023-Q1 , TMS320F280023C , TMS320F280023C , TMS320F280025 , TMS320F280025 , TMS320F280025-Q1 , TMS320F280025-Q1 , TMS320F280025C , TMS320F280025C , TMS320F280025C-Q1 , TMS320F280025C-Q1 , TMS320F280033 , TMS320F280033 , TMS320F280034 , TMS320F280034 , TMS320F280034-Q1 , TMS320F280034-Q1 , TMS320F280036-Q1 , TMS320F280036-Q1 , TMS320F280036C-Q1 , TMS320F280036C-Q1 , TMS320F280037 , TMS320F280037 , TMS320F280037-Q1 , TMS320F280037-Q1 , TMS320F280037C , TMS320F280037C , TMS320F280037C-Q1 , TMS320F280037C-Q1 , TMS320F280038-Q1 , TMS320F280038-Q1 , TMS320F280038C-Q1 , TMS320F280038C-Q1 , TMS320F280039 , TMS320F280039 , TMS320F280039-Q1 , TMS320F280039-Q1 , TMS320F280039C , TMS320F280039C , TMS320F280039C-Q1 , TMS320F280039C-Q1 , TMS320F280040-Q1 , TMS320F280040-Q1 , TMS320F280040C-Q1 , TMS320F280040C-Q1 , TMS320F280041 , TMS320F280041 , TMS320F280041-Q1 , TMS320F280041-Q1 , TMS320F280041C , TMS320F280041C , TMS320F280041C-Q1 , TMS320F280041C-Q1 , TMS320F280045 , TMS320F280045 , TMS320F280048-Q1 , TMS320F280048-Q1 , TMS320F280048C-Q1 , TMS320F280048C-Q1 , TMS320F280049 , TMS320F280049 , TMS320F280049-Q1 , TMS320F280049-Q1 , TMS320F280049C , TMS320F280049C , TMS320F280049C-Q1 , TMS320F280049C-Q1 , TMS320F28075 , TMS320F28075 , TMS320F28075-Q1 , TMS320F28075-Q1 , TMS320F28076 , TMS320F28076 , TMS320F28374D , TMS320F28374D , TMS320F28374S , TMS320F28374S , TMS320F28375D , TMS320F28375D , TMS320F28375S , TMS320F28375S , TMS320F28375S-Q1 , TMS320F28375S-Q1 , TMS320F28376D , TMS320F28376D , TMS320F28376S , TMS320F28376S , TMS320F28377D , TMS320F28377D , TMS320F28377D-EP , TMS320F28377D-EP , TMS320F28377D-Q1 , TMS320F28377D-Q1 , TMS320F28377S , TMS320F28377S , TMS320F28377S-Q1 , TMS320F28377S-Q1 , TMS320F28378D , TMS320F28378D , TMS320F28378S , TMS320F28378S , TMS320F28379D , TMS320F28379D , TMS320F28379D-Q1 , TMS320F28379D-Q1 , TMS320F28379S , TMS320F28379S , TMS320F28384D , TMS320F28384D , TMS320F28384D-Q1 , TMS320F28384D-Q1 , TMS320F28384S , TMS320F28384S , TMS320F28384S-Q1 , TMS320F28384S-Q1 , TMS320F28386D , TMS320F28386D , TMS320F28386D-Q1 , TMS320F28386D-Q1 , TMS320F28386S , TMS320F28386S , TMS320F28386S-Q1 , TMS320F28386S-Q1 , TMS320F28388D , TMS320F28388D , TMS320F28388S , TMS320F28388S , TMS320F28P550SJ , TMS320F28P550SJ , TMS320F28P559SJ-Q1 , TMS320F28P559SJ-Q1 , TMS320F28P650DH , TMS320F28P650DH , TMS320F28P650DK , TMS320F28P650DK , TMS320F28P650SH , TMS320F28P650SH , TMS320F28P650SK , TMS320F28P650SK , TMS320F28P659DH-Q1 , TMS320F28P659DH-Q1 , TMS320F28P659DK-Q1 , TMS320F28P659DK-Q1 , TMS320F28P659SH-Q1 , TMS320F28P659SH-Q1

 

  1.   Abstract
  2.   Trademarks
  3. 1Introduction
    1. 1.1 Resources
      1. 1.1.1 TINA-TI SPICE-Based Analog Simulation Program
      2. 1.1.2 PSPICE for TI Design and Simulation Tool
      3. 1.1.3 Application Report: ADC Input Circuit Evaluation for C2000 MCUs
      4. 1.1.4 TI Precision Labs - SAR ADC Input Driver Design Series
      5. 1.1.5 Analog Engineer's Calculator
      6. 1.1.6 TI Precision Labs - Op Amps: Stability Series
      7. 1.1.7 Related Application Reports
      8. 1.1.8 Comparison of Schematic Capture and Simulation Tools
      9. 1.1.9 PSpice for TI ADC Input Models
  4. 2Charge-Sharing Concept
    1. 2.1 Traditional High-Speed ADC Driving Circuits
    2. 2.2 Increased Cs in High-Speed ADC Driving Circuits
    3. 2.3 Very Large Cs in ADC Driving Circuits
    4. 2.4 Charge-Sharing Operation
    5. 2.5 Sample Rate and Source Impedance vs. Tracking Error
    6. 2.6 Analytical Solution to Tracking Error
    7. 2.7 Charge-Sharing in Multiplexed ADCs
    8. 2.8 Charge-Sharing Circuit Advantages
    9. 2.9 Charge-Sharing Circuit Disadvantages
  5. 3Charge Sharing Design Flow
    1. 3.1 Gather Required Information
    2. 3.2 Size Cs
    3. 3.3 Verify Sample Rate, Source Impedance, and Bandwidth
    4. 3.4 Simulate Circuit Settling Performance
    5. 3.5 Input Design Worksheet
  6. 4Charge-Sharing Circuit Simulation Methods
    1. 4.1 Simulation Components
      1. 4.1.1 Vin
      2. 4.1.2 Voa , Voa_SS, and Verror
      3. 4.1.3 Rs, Cs, and Vcont
      4. 4.1.4 Ch, Ron, and Cp
      5. 4.1.5 S+H Switch, Discharge Switch, tacq, and tdis
    2. 4.2 Configure the Simulation Parameters
    3. 4.3 Bias Point Analysis to Determine Voa_ss
    4. 4.4 Transient Analysis to Determine Voa_ss
    5. 4.5 Measure the Settling Error
    6. 4.6 Sweeping Source Resistance
  7. 5Example Circuit Designs
    1. 5.1 Example 1: Determining Maximum Sample Rate
      1. 5.1.1 Example 1: Analysis
      2. 5.1.2 Example 1: Simulation
      3. 5.1.3 Example 1: Worksheet
    2. 5.2 Example 2: Adding an Op-amp
      1. 5.2.1 Example 2: Analysis
      2. 5.2.2 Example 2: Simulation
      3. 5.2.3 Example 2: Worksheet
    3. 5.3 Example 3: Reduced Settling Target
      1. 5.3.1 Example 3: Analysis
      2. 5.3.2 Example 3: Simulation
      3. 5.3.3 Example 3: Worksheet
    4. 5.4 Example 4: Voltage Divider
      1. 5.4.1 Example 4: Analysis
      2. 5.4.2 Example 4: Simulation
      3. 5.4.3 Example 4: Worksheet
  8. 6Summary
  9.   A Appendix: ADC Input Settling Motivation
    1.     A.1 Mechanism of ADC Input Settling
    2.     A.2 Symptoms of Inadequate Settling
      1.      A.2.1 Distortion
      2.      A.2.2 Memory Cross-Talk
      3.      A.2.3 Accuracy
      4.      A.2.4 C2000 ADC Architecture
  10.   References
  11.   Revision History

Example 2: Simulation

Since this input design contains an op-amp, the first step is to perform a transient analysis to determine the steady-state output voltage of the op-amp. Note that this application report performs a transient analysis because a bias point analysis does not converge. The voltage is determined to be 2.999995 V. The full simulation circuit (populated to include Voa_ss = 2.999995 V) can be seen in Figure 5-4. The simulation profile can be seen in Figure 5-5.

GUID-18E173CF-4AC9-42B4-ACDF-C79AD0D3A3CD-low.jpg Figure 5-4 Example 2: Simulation Circuit
GUID-CE5EE93D-C447-43B6-B5E5-55C84D1759C1-low.jpg Figure 5-5 Example 2: Simulation Profile

Running the transient analysis from 1 ms to 2 ms gives the results seen in Figure 5-6. The overall settling error is around 2.999995 V - 2.999813 V = 182 µV. This is well within the settling error target of 366 µV.

GUID-7757DBBA-E6DA-47EB-BA24-34D0F6806552-low.jpg Figure 5-6 Example 2: Simulation Results

Because the op-amp is driving a large capacitive load, it is also good practice to run a phase margin simulation to ensure the driving op-amp is stable. The circuit setup for this can be seen in Figure 5-7, the simulation profile can be seen in Figure 5-8, and the results can be seen in Figure 5-9. The measured phase margin is 65 degrees. Since this is > 45 degrees, the circuit can be assumed to be stable. For more information on how to run the stability simulation refer to the TI Precision Labs video series: TI Precision Labs - Op amps: Stability. Note that while this video series describes conceptually how to perform these simulations, the video series does not provide explicit instructions on how to perform these simulations using PSpice for TI. Further exploration of these simulations using PSpice for TI is beyond the scope of this application report.

GUID-FB3DC4EB-2557-4A53-A0CF-9F46B515CF0B-low.jpg Figure 5-7 Example 2: Stability Simulation Circuit
GUID-D8F270DD-BE99-40DD-8EB6-178BFBE3A932-low.jpg Figure 5-8 Example 2: Stability Simulation Profile
GUID-684B0C90-9596-48CF-8252-EEB80B2A5AFD-low.jpg Figure 5-9 Example 2: Stability Simulation Results