SBAA607A December   2023  – January 2024 AM2631 , AM2631-Q1 , AM2632 , AM2632-Q1 , AM2634 , AM2634-Q1 , AM263P2 , AM263P4 , AM263P4-Q1 , AMC1303M2520 , AMC1305L25 , AMC1306M25 , F29H850TU , TMS320F280033 , TMS320F280034 , TMS320F280034-Q1 , TMS320F280036-Q1 , TMS320F280036C-Q1 , TMS320F280037 , TMS320F280037-Q1 , TMS320F280037C , TMS320F280037C-Q1 , TMS320F280038-Q1 , TMS320F280038C-Q1 , TMS320F280039 , TMS320F280039-Q1 , TMS320F280039C , TMS320F280039C-Q1 , TMS320F280040-Q1 , TMS320F280040C-Q1 , TMS320F280041 , TMS320F280041-Q1 , TMS320F280041C , TMS320F280041C-Q1 , TMS320F280045 , TMS320F280048-Q1 , TMS320F280048C-Q1 , TMS320F280049 , TMS320F280049-Q1 , TMS320F280049C , TMS320F280049C-Q1 , TMS320F28075 , TMS320F28075-Q1 , TMS320F28076 , TMS320F28374D , TMS320F28374S , TMS320F28375D , TMS320F28375S , TMS320F28375S-Q1 , TMS320F28376D , TMS320F28376S , TMS320F28377D , TMS320F28377D-Q1 , TMS320F28377S , TMS320F28377S-Q1 , TMS320F28378D , TMS320F28378S , TMS320F28379D , TMS320F28379D-Q1 , TMS320F28379S , TMS320F28384D , TMS320F28384D-Q1 , TMS320F28384S , TMS320F28384S-Q1 , TMS320F28386D , TMS320F28386D-Q1 , TMS320F28386S , TMS320F28386S-Q1 , TMS320F28388D , TMS320F28388S , TMS320F28P650DH , TMS320F28P650DK , TMS320F28P650SH , TMS320F28P650SK , TMS320F28P659DH-Q1 , TMS320F28P659DK-Q1 , TMS320F28P659SH-Q1

 

  1.   1
  2.   Abstract
  3.   Trademarks
  4. 1Introduction
  5. 2Design Challenge With Digital Interface Timing Specifications
  6. 3Design Approach With Clock Edge Delay Compensation
    1. 3.1 Clock Signal Compensation With Software Configurable Phase Delay
    2. 3.2 Clock Signal Compensation With Hardware Configurable Phase Delay
    3. 3.3 Clock Signal Compensation by Clock Return
    4. 3.4 Clock Signal Compensation by Clock Inversion at the MCU
  7. 4Test and Validation
    1. 4.1 Test Equipment and Software
    2. 4.2 Testing of Clock Signal Compensation With Software Configurable Phase Delay
      1. 4.2.1 Test Setup
      2. 4.2.2 Test Measurement Results
    3. 4.3 Testing of Clock Signal Compensation by Clock Inversion at MCU
      1. 4.3.1 Test Setup
      2. 4.3.2 Test Measurement Results
        1. 4.3.2.1 Test Result – No Clock Inversion of Clock Input at GPIO123
        2. 4.3.2.2 Test Result – Clock Inversion of Clock Input at GPIO123
    4. 4.4 Digital Interface Timing Validation by Calculation Tool
      1. 4.4.1 Digital Interface With No Compensation Method
      2. 4.4.2 Commonly Used Method - Reduction of the Clock Frequency
      3. 4.4.3 Clock Edge Compensation With Software Configurable Phase Delay
  8. 5Conclusion
  9. 6References
  10. 7Revision History

Commonly Used Method - Reduction of the Clock Frequency

A compromise to meet the MCUs timing requirements is to reduce the modulator clock frequency. In this example a 17 MHz clock frequency allows the setup and hold timing requirements of the MCU to be met. The calculated setup and hold times including minimum and maximum values at a clock frequency of 17 MHz are shown in Table 4-3. The margin for the minimum setup time to the MCUs setup time requirement is 0 ns. This means tolerances in the system can possibly lead to incorrect acquisition of data. A larger margin for tolerances in the system can be achieved by further reducing the clock frequency, but this has a negative effect on the system performance.

Table 4-3 TMS320F28379D Digital Interface Timings Using AMC1305L25 at 17-MHz Clock
Min. Setup Time @MCU10.0 ns
Max. Setup Time @MCU27.7 ns
Min. Hold Time @MCU31.1 ns
Max. Hold Time @MCU48.8 ns