SBOA615 November   2024 INA180 , INA180-Q1 , INA181 , INA181-Q1 , INA183 , INA185 , INA185-Q1 , INA186 , INA186-Q1 , INA190 , INA190-EP , INA190-Q1 , INA191 , INA199 , INA199-Q1 , INA209 , INA210 , INA210-Q1 , INA211 , INA211-Q1 , INA212 , INA212-Q1 , INA213 , INA213-Q1 , INA214 , INA214-Q1 , INA215 , INA215-Q1 , INA216 , INA2180 , INA2180-Q1 , INA2181 , INA2181-Q1 , INA219 , INA2191 , INA220 , INA220-Q1 , INA223 , INA225 , INA225-Q1 , INA226 , INA226-Q1 , INA228 , INA228-Q1 , INA229 , INA229-Q1 , INA2290 , INA230 , INA231 , INA232 , INA233 , INA234 , INA236 , INA237 , INA237-Q1 , INA238 , INA238-Q1 , INA239 , INA239-Q1 , INA240 , INA240-Q1 , INA241A , INA241A-Q1 , INA241B , INA241B-Q1 , INA250 , INA250-Q1 , INA253 , INA253-Q1 , INA254 , INA260 , INA280 , INA280-Q1 , INA281 , INA281-Q1 , INA290 , INA290-Q1 , INA293 , INA293-Q1 , INA296A , INA296A-Q1 , INA296B , INA296B-Q1 , INA300 , INA300-Q1 , INA301 , INA301-Q1 , INA302 , INA302-Q1 , INA303 , INA303-Q1 , INA310A , INA310A-Q1 , INA310B , INA310B-Q1 , INA3221 , INA3221-Q1 , INA381 , INA381-Q1 , INA4180 , INA4180-Q1 , INA4181 , INA4181-Q1 , INA4230 , INA4235 , INA4290 , INA700 , INA740A , INA740B , INA745A , INA745B , INA780A , INA780B , INA790B , INA791B , LMP8278Q-Q1 , LMP8601 , LMP8601-Q1 , LMP8602 , LMP8602-Q1 , LMP8603 , LMP8603-Q1 , LMP8640 , LMP8640-Q1 , LMP8640HV

 

  1.   1
  2.   Abstract
  3.   Trademarks
  4. 1Introduction
  5. 2What is ESD, EOS, and Latch Up?
    1. 2.1 Electrical Overstress
    2. 2.2 Electrical Static Discharge
    3. 2.3 Latch Ups
  6. 3Risky Applications for Current Sense Amplifiers
    1. 3.1 Applications with Over Voltage Transient Surges (EOS)
    2. 3.2 Pulse Width Modulated Current Sensing Risks
    3. 3.3 Applications with Significant Electromagnetic Interference
      1. 3.3.1 Layout Best Practices for Reducing EMI Induced Latch Up or Noise
        1. 3.3.1.1 Techniques for Proper Grounding and Decoupling Capacitance
        2. 3.3.1.2 Additional and Advanced Layout Techniques
        3. 3.3.1.3 Proper Input Filtering Layout Techniques for Noise Reduction
    4. 3.4 Applications that Float the Supply (VS or GND) Pins of CSA
  7. 4Summary
  8. 5References

Techniques for Proper Grounding and Decoupling Capacitance

  1. GND pin has a low-impedance, direct path to the decoupling capacitor pad.
  2. There is low-impedance, direct path from decoupling ground pad to system ground pour.
  3. The supply trace for supply pin (VS) must go through decoupling capacitor.

Figure 3-3 is an example with proper layout for filters at both supply and input pins on a standard CSA. C12 is the standard 0.1μF decoupling capacitor.

 Good Decoupling Capacitor
                    Layout Figure 3-3 Good Decoupling Capacitor Layout

Figure 3-4 shows bad layout where there is significant impedance in between GND pin and decoupling capacitor making this device susceptible to latch up in EMI environments.

 Bad Decoupling Capacitor
                    Layout With Impedance from Pin to Capacitor Figure 3-4 Bad Decoupling Capacitor Layout With Impedance from Pin to Capacitor