SLAA834B May   2018  – August 2021 MSP430FR2000 , MSP430FR2032 , MSP430FR2033 , MSP430FR2100 , MSP430FR2110 , MSP430FR2111 , MSP430FR2153 , MSP430FR2155 , MSP430FR2310 , MSP430FR2311 , MSP430FR2353 , MSP430FR2355 , MSP430FR2422 , MSP430FR2433 , MSP430FR2475 , MSP430FR2476 , MSP430FR2512 , MSP430FR2522 , MSP430FR2532 , MSP430FR2533 , MSP430FR2632 , MSP430FR2633 , MSP430FR2672 , MSP430FR2673 , MSP430FR2675 , MSP430FR2676 , MSP430FR4131 , MSP430FR4132 , MSP430FR4133 , MSP430FR5720 , MSP430FR5721 , MSP430FR5722 , MSP430FR5723 , MSP430FR5724 , MSP430FR5725 , MSP430FR5726 , MSP430FR5727 , MSP430FR5728 , MSP430FR5729 , MSP430FR5730 , MSP430FR5731 , MSP430FR5732 , MSP430FR5733 , MSP430FR5734 , MSP430FR5735 , MSP430FR5736 , MSP430FR5737 , MSP430FR5738 , MSP430FR5739 , MSP430FR5847 , MSP430FR58471 , MSP430FR5848 , MSP430FR5849 , MSP430FR5857 , MSP430FR5858 , MSP430FR5859 , MSP430FR5867 , MSP430FR58671 , MSP430FR5868 , MSP430FR5869 , MSP430FR5870 , MSP430FR5872 , MSP430FR58721 , MSP430FR5887 , MSP430FR5888 , MSP430FR5889 , MSP430FR58891 , MSP430FR5922 , MSP430FR59221 , MSP430FR5947 , MSP430FR59471 , MSP430FR5948 , MSP430FR5949 , MSP430FR5957 , MSP430FR5958 , MSP430FR5959 , MSP430FR5962 , MSP430FR5964 , MSP430FR5967 , MSP430FR5968 , MSP430FR5969 , MSP430FR59691 , MSP430FR5970 , MSP430FR5972 , MSP430FR59721 , MSP430FR5986 , MSP430FR5987 , MSP430FR5988 , MSP430FR5989 , MSP430FR59891 , MSP430FR5992 , MSP430FR5994 , MSP430FR59941

 

  1.   Trademarks
  2. Introduction
  3. Configuration of MSP430FR4xx and MSP430FR2xx Devices
  4. In-System Programming of Nonvolatile Memory
    1. 3.1 Ferroelectric RAM (FRAM) Overview
    2. 3.2 FRAM Cell
    3. 3.3 Protecting FRAM Using Write Protection Bits in FR4xx Family
    4. 3.4 FRAM Memory Wait States
    5. 3.5 Bootloader (BSL)
    6. 3.6 JTAG and Security
    7. 3.7 Production Programming
  5. Hardware Migration Considerations
  6. Device Calibration Information
  7. Important Device Specifications
  8. Core Architecture Considerations
    1. 7.1 Power Management Module (PMM)
      1. 7.1.1 Core LDO and LPM3.5 LDO
      2. 7.1.2 SVS
      3. 7.1.3 VREF
    2. 7.2 Clock System
      1. 7.2.1 DCO Frequencies
      2. 7.2.2 FLL, REFO, and DCO Tap
      3. 7.2.3 FRAM Access at 16 MHz and 24 MHz and Clocks-on-Demand
    3. 7.3 Operating Modes, Wakeup, and Reset
      1. 7.3.1 LPMx.5
      2. 7.3.2 Reset
    4. 7.4 Determining the Cause of Reset
    5. 7.5 Interrupt Vectors
    6. 7.6 FRAM and the FRAM Controller
    7. 7.7 RAM Controller (RAMCTL)
  9. Peripheral Considerations
    1. 8.1  Overview of the Peripherals on the FR4xx and FR59xx Families
    2. 8.2  Ports
      1. 8.2.1 Digital Input/Output
      2. 8.2.2 Capacitive Touch I/O
    3. 8.3  Communication Modules
    4. 8.4  Timer and IR Modulation Logic
    5. 8.5  Backup Memory
    6. 8.6  RTC Counter
    7. 8.7  LCD
    8. 8.8  Interrupt Compare Controller (ICC)
    9. 8.9  Analog-to-Digital Converters
      1. 8.9.1 ADC12_B to ADC
    10. 8.10 Enhanced Comparator (eCOMP)
    11. 8.11 Operational Amplifiers
    12. 8.12 Smart Analog Combo (SAC)
  10. ROM Libraries
  11. 10Conclusion
  12. 11References
  13. 12Revision History

Digital Input/Output

The main differences in the FR4xx general-purpose I/O (GPIO) pins are:

  • P1 and P2 ports support interrupt inputs in the FR4xx devices, the same as in the FR59xx devices. In MSP430FR231x devices, P2.2, P2.3, P2.4, and P2.5 do not support interrupts. In FR211x devices, P1.4, P1.5, P1.6, and P1.7 do not support interrupts. In FR235x and FR215x devices, P1, P2, P3, and P4 ports support interrupt. In FR267x and FR247x devices, all GPIOs including P1, P2, P3, P4, P5, and P6 support interrupts. As the comparison, P1, P2, P3, and P4 ports support interrupt in FR59xx family
  • Peripheral function select in the FR413x and FR203x devices uses one register for Port x function selection: PxSEL0. Other FR4xx devices use two registers for Port x function selection: PxSEL0 and PxSEL1. FR59xx devices also use Port x Function Selection Register 0 (PxSEL0) and Port x Function Selection Register 1 (PxSEL1). See the device-specific data sheet for details.
  • In the FR4xx and FR59xx families, the high-impedance leakage current is ±20 nA
  • Configuration of digital I/O after BOR reset

    In the FR4xx and FR59xx families, to prevent any cross currents during start-up of the device, all port pins are high-impedance with Schmitt triggers and module functions disabled. To enable the I/O functions after a BOR reset, first configure the ports, and then clear the LOCKLPM5 bit.

  • Configuration for LPMx.5 power modes

    During LPMx.5 the I/O pin states are held and locked based on the settings before entry to LPMx.5, regardless of the default I/O register settings. Note that only the pin conditions are retained. All port configuration register settings such as PxDIR, PxREN, PxOUT, PxIES, and PxIE contents are lost and must be reconfigured after exit from LPMx.5. After wake from LPMx.5, the LOCKLPM5 bit can be cleared to release I/O pin conditions and I/O interrupt configuration. For details, see the Configuration for LPMx.5 Low-Power Modes section in the Digital I/O chapter of the MSP430FR4xx and MSP430FR2xx family user's guide.

  • Configuration of unused port pins

    To prevent a floating input and to reduce power consumption, unused I/O pins should be configured as I/O function, output direction, and left unconnected on the PCB. Alternatively, the integrated pullup or pulldown resistor can be enabled by setting the PxREN bit of the unused pin to prevent a floating input.

  • Configuration of unbonded pins

    In the FR413x and FR203x MCUs, some pins are not bonded out in packages with fewer pins than the 64-pin PM package. Configure these unbonded pins as unused port pins.