SLAA834B May   2018  – August 2021 MSP430FR2000 , MSP430FR2032 , MSP430FR2033 , MSP430FR2100 , MSP430FR2110 , MSP430FR2111 , MSP430FR2153 , MSP430FR2155 , MSP430FR2310 , MSP430FR2311 , MSP430FR2353 , MSP430FR2355 , MSP430FR2422 , MSP430FR2433 , MSP430FR2475 , MSP430FR2476 , MSP430FR2512 , MSP430FR2522 , MSP430FR2532 , MSP430FR2533 , MSP430FR2632 , MSP430FR2633 , MSP430FR2672 , MSP430FR2673 , MSP430FR2675 , MSP430FR2676 , MSP430FR4131 , MSP430FR4132 , MSP430FR4133 , MSP430FR5720 , MSP430FR5721 , MSP430FR5722 , MSP430FR5723 , MSP430FR5724 , MSP430FR5725 , MSP430FR5726 , MSP430FR5727 , MSP430FR5728 , MSP430FR5729 , MSP430FR5730 , MSP430FR5731 , MSP430FR5732 , MSP430FR5733 , MSP430FR5734 , MSP430FR5735 , MSP430FR5736 , MSP430FR5737 , MSP430FR5738 , MSP430FR5739 , MSP430FR5847 , MSP430FR58471 , MSP430FR5848 , MSP430FR5849 , MSP430FR5857 , MSP430FR5858 , MSP430FR5859 , MSP430FR5867 , MSP430FR58671 , MSP430FR5868 , MSP430FR5869 , MSP430FR5870 , MSP430FR5872 , MSP430FR58721 , MSP430FR5887 , MSP430FR5888 , MSP430FR5889 , MSP430FR58891 , MSP430FR5922 , MSP430FR59221 , MSP430FR5947 , MSP430FR59471 , MSP430FR5948 , MSP430FR5949 , MSP430FR5957 , MSP430FR5958 , MSP430FR5959 , MSP430FR5962 , MSP430FR5964 , MSP430FR5967 , MSP430FR5968 , MSP430FR5969 , MSP430FR59691 , MSP430FR5970 , MSP430FR5972 , MSP430FR59721 , MSP430FR5986 , MSP430FR5987 , MSP430FR5988 , MSP430FR5989 , MSP430FR59891 , MSP430FR5992 , MSP430FR5994 , MSP430FR59941

 

  1.   Trademarks
  2. Introduction
  3. Configuration of MSP430FR4xx and MSP430FR2xx Devices
  4. In-System Programming of Nonvolatile Memory
    1. 3.1 Ferroelectric RAM (FRAM) Overview
    2. 3.2 FRAM Cell
    3. 3.3 Protecting FRAM Using Write Protection Bits in FR4xx Family
    4. 3.4 FRAM Memory Wait States
    5. 3.5 Bootloader (BSL)
    6. 3.6 JTAG and Security
    7. 3.7 Production Programming
  5. Hardware Migration Considerations
  6. Device Calibration Information
  7. Important Device Specifications
  8. Core Architecture Considerations
    1. 7.1 Power Management Module (PMM)
      1. 7.1.1 Core LDO and LPM3.5 LDO
      2. 7.1.2 SVS
      3. 7.1.3 VREF
    2. 7.2 Clock System
      1. 7.2.1 DCO Frequencies
      2. 7.2.2 FLL, REFO, and DCO Tap
      3. 7.2.3 FRAM Access at 16 MHz and 24 MHz and Clocks-on-Demand
    3. 7.3 Operating Modes, Wakeup, and Reset
      1. 7.3.1 LPMx.5
      2. 7.3.2 Reset
    4. 7.4 Determining the Cause of Reset
    5. 7.5 Interrupt Vectors
    6. 7.6 FRAM and the FRAM Controller
    7. 7.7 RAM Controller (RAMCTL)
  9. Peripheral Considerations
    1. 8.1  Overview of the Peripherals on the FR4xx and FR59xx Families
    2. 8.2  Ports
      1. 8.2.1 Digital Input/Output
      2. 8.2.2 Capacitive Touch I/O
    3. 8.3  Communication Modules
    4. 8.4  Timer and IR Modulation Logic
    5. 8.5  Backup Memory
    6. 8.6  RTC Counter
    7. 8.7  LCD
    8. 8.8  Interrupt Compare Controller (ICC)
    9. 8.9  Analog-to-Digital Converters
      1. 8.9.1 ADC12_B to ADC
    10. 8.10 Enhanced Comparator (eCOMP)
    11. 8.11 Operational Amplifiers
    12. 8.12 Smart Analog Combo (SAC)
  10. ROM Libraries
  11. 10Conclusion
  12. 11References
  13. 12Revision History

VREF

Unlike REF_A in FR59xx, the FR4xx includes a VREF generation block and a high-accuracy bandgap in the PMM module designed for low-power applications. Two voltage references are generated for internal use and external use (1.2-V VREF) (see Figure 7-2).

In the FR235x, FR215x, FR267x and FR247x, the shared reference VREF is connected to the ADC module and can be used as a reference voltage for the ADC. It is also internally connected to the ADC channel 13. This makes a possible to monitor the DVCC voltage by using ADC sampling 1.5-V, 2.0-V, or 2.5-V VREF (with DVCC as the ADC reference) without the support of any external components. For detailed information, see the sections Power Management Module (PMM) and On-Chip Reference Voltages in the device-specific data sheet.

The low-power reference 1.2-V VREF can be used as input to eCOMP.

The low-power reference 1.2-V VREF can be buffered and output to a pin when the ADC channel on that pin is selected as the function. For which pin the 1.2-V can be output to, see the device-specific data sheet. The 1.2-V VREF has only 1-mA drive capability (see Figure 7-2). For more detailed information, see the PMM and ADC chapters in the MSP430FR4xx and MSP430FR2xx family user's guide.

In FR59xx, the internal shared VREF voltages can be output through an external pin. In FR59xx, the internal shared VREF voltages are different from FR4xx. The FR59xx does not support a low-power 1.2-V VREF like FR4xx supports.

GUID-F8A2CECB-FDEA-43EF-975A-46614D10AEB4-low.gifFigure 7-2 FR4xx Internal Reference Block Diagram