SLAA834B May   2018  – August 2021 MSP430FR2000 , MSP430FR2032 , MSP430FR2033 , MSP430FR2100 , MSP430FR2110 , MSP430FR2111 , MSP430FR2153 , MSP430FR2155 , MSP430FR2310 , MSP430FR2311 , MSP430FR2353 , MSP430FR2355 , MSP430FR2422 , MSP430FR2433 , MSP430FR2475 , MSP430FR2476 , MSP430FR2512 , MSP430FR2522 , MSP430FR2532 , MSP430FR2533 , MSP430FR2632 , MSP430FR2633 , MSP430FR2672 , MSP430FR2673 , MSP430FR2675 , MSP430FR2676 , MSP430FR4131 , MSP430FR4132 , MSP430FR4133 , MSP430FR5720 , MSP430FR5721 , MSP430FR5722 , MSP430FR5723 , MSP430FR5724 , MSP430FR5725 , MSP430FR5726 , MSP430FR5727 , MSP430FR5728 , MSP430FR5729 , MSP430FR5730 , MSP430FR5731 , MSP430FR5732 , MSP430FR5733 , MSP430FR5734 , MSP430FR5735 , MSP430FR5736 , MSP430FR5737 , MSP430FR5738 , MSP430FR5739 , MSP430FR5847 , MSP430FR58471 , MSP430FR5848 , MSP430FR5849 , MSP430FR5857 , MSP430FR5858 , MSP430FR5859 , MSP430FR5867 , MSP430FR58671 , MSP430FR5868 , MSP430FR5869 , MSP430FR5870 , MSP430FR5872 , MSP430FR58721 , MSP430FR5887 , MSP430FR5888 , MSP430FR5889 , MSP430FR58891 , MSP430FR5922 , MSP430FR59221 , MSP430FR5947 , MSP430FR59471 , MSP430FR5948 , MSP430FR5949 , MSP430FR5957 , MSP430FR5958 , MSP430FR5959 , MSP430FR5962 , MSP430FR5964 , MSP430FR5967 , MSP430FR5968 , MSP430FR5969 , MSP430FR59691 , MSP430FR5970 , MSP430FR5972 , MSP430FR59721 , MSP430FR5986 , MSP430FR5987 , MSP430FR5988 , MSP430FR5989 , MSP430FR59891 , MSP430FR5992 , MSP430FR5994 , MSP430FR59941

 

  1.   Trademarks
  2. Introduction
  3. Configuration of MSP430FR4xx and MSP430FR2xx Devices
  4. In-System Programming of Nonvolatile Memory
    1. 3.1 Ferroelectric RAM (FRAM) Overview
    2. 3.2 FRAM Cell
    3. 3.3 Protecting FRAM Using Write Protection Bits in FR4xx Family
    4. 3.4 FRAM Memory Wait States
    5. 3.5 Bootloader (BSL)
    6. 3.6 JTAG and Security
    7. 3.7 Production Programming
  5. Hardware Migration Considerations
  6. Device Calibration Information
  7. Important Device Specifications
  8. Core Architecture Considerations
    1. 7.1 Power Management Module (PMM)
      1. 7.1.1 Core LDO and LPM3.5 LDO
      2. 7.1.2 SVS
      3. 7.1.3 VREF
    2. 7.2 Clock System
      1. 7.2.1 DCO Frequencies
      2. 7.2.2 FLL, REFO, and DCO Tap
      3. 7.2.3 FRAM Access at 16 MHz and 24 MHz and Clocks-on-Demand
    3. 7.3 Operating Modes, Wakeup, and Reset
      1. 7.3.1 LPMx.5
      2. 7.3.2 Reset
    4. 7.4 Determining the Cause of Reset
    5. 7.5 Interrupt Vectors
    6. 7.6 FRAM and the FRAM Controller
    7. 7.7 RAM Controller (RAMCTL)
  9. Peripheral Considerations
    1. 8.1  Overview of the Peripherals on the FR4xx and FR59xx Families
    2. 8.2  Ports
      1. 8.2.1 Digital Input/Output
      2. 8.2.2 Capacitive Touch I/O
    3. 8.3  Communication Modules
    4. 8.4  Timer and IR Modulation Logic
    5. 8.5  Backup Memory
    6. 8.6  RTC Counter
    7. 8.7  LCD
    8. 8.8  Interrupt Compare Controller (ICC)
    9. 8.9  Analog-to-Digital Converters
      1. 8.9.1 ADC12_B to ADC
    10. 8.10 Enhanced Comparator (eCOMP)
    11. 8.11 Operational Amplifiers
    12. 8.12 Smart Analog Combo (SAC)
  10. ROM Libraries
  11. 10Conclusion
  12. 11References
  13. 12Revision History

FRAM Memory Wait States

Both the FR4xx MCU and FR59xx MCU are FRAM based MCU. The maximum FRAM memory access speed is 8 MHz. If the MCLK is operating faster than 8 MHz, wait-states are required to ensure reliable FRAM access. When using MCLK ≥ 8 MHz, configure the FRAM wait states in software before configuring the MCLK frequency.

  1. Configure the appropriate wait states.
        FRCTL0 = FRCTLPW | NWAITS_x
  2. Configure MCLK ≥ 8 MHz

For more information, see the Wait State Control section of the FRAM Controller (FRCTRL) chapter in the MSP430FR4xx and MSP430FR2xx family user's guide and the MSP430FR58xx, MSP430FR59xx, and MSP430FR6xx family user's guide.