SLAAE72 December   2022 MSPM0L1105 , MSPM0L1106 , MSPM0L1227 , MSPM0L1228 , MSPM0L1228-Q1 , MSPM0L1303 , MSPM0L1304 , MSPM0L1304-Q1 , MSPM0L1305 , MSPM0L1305-Q1 , MSPM0L1306 , MSPM0L1306-Q1 , MSPM0L1343 , MSPM0L1344 , MSPM0L1345 , MSPM0L1346 , MSPM0L2227 , MSPM0L2228 , MSPM0L2228-Q1

 

  1.   Abstract
  2.   Trademarks
  3. 1Overview
  4. 2Low-Power Features in PMCU
    1. 2.1 Overview
      1. 2.1.1 Power Domains and Power Modes
    2. 2.2 Power Management (PMU)
      1. 2.2.1 Supply Supervisors
      2. 2.2.2 Peripheral Power Control
      3. 2.2.3 VBOOST for Analog Muxes
    3. 2.3 Clock Module (CKM)
      1. 2.3.1 Oscillators
      2. 2.3.2 Clocks
      3. 2.3.3 Asynchronous Fast Clock Requests
      4. 2.3.4 Shutdown Mode Handling
  5. 3Low-Power Optimization
    1. 3.1 Low-Power Basics
    2. 3.2 MSPM0 Low-Power Feature Use
      1. 3.2.1 Low-Power Modes
      2. 3.2.2 System Clock and Peripheral Operation Frequency
      3. 3.2.3 I/O Configuration
      4. 3.2.4 Event Manager
      5. 3.2.5 Analog Peripheral Low-Power Features
      6. 3.2.6 Run Code From RAM
    3. 3.3 Software Coding Strategies
    4. 3.4 Hardware Design Strategies
  6. 4Power Consumption Measurement and Evaluation
    1. 4.1 Current Evaluation
    2. 4.2 Current Measurement
      1. 4.2.1 Current Measurement

Low-Power Features in PMCU

The power management and clock unit (PMCU) provide all power, clocking, reset, and system control services for the device, which is the key peripheral that influences the low-power performance of this device. The following sections help users better understand this peripheral to implement the strategies in Section 3 more easily. The current section describes the low-power related features and attentions in PMCU. For other features, detailed peripheral description, and register control, refer to the related technical reference manual.