SLUAAY2 December   2024 ISO5451 , ISO5451-Q1 , ISO5452 , ISO5452-Q1 , ISO5851 , ISO5851-Q1 , ISO5852S , ISO5852S-EP , ISO5852S-Q1 , UCC21710 , UCC21710-Q1 , UCC21717-Q1 , UCC21732 , UCC21732-Q1 , UCC21736-Q1 , UCC21737-Q1 , UCC21738-Q1 , UCC21739-Q1 , UCC21750 , UCC21750-Q1 , UCC21755-Q1 , UCC21756-Q1 , UCC21759-Q1

 

  1.   1
  2.   Abstract
  3.   Trademarks
  4. Introduction
  5. SiC and IGBT Characteristics
  6. Failure Modes
  7. Short-Circuit Protection Approaches
    1. 4.1 Short-Circuit Current-Based Protection Implementation
    2. 4.2 Short Circuit Voltage-Based Protection Implementation
  8. DESAT Circuitry Design
    1. 5.1 DESAT Circuit Component Selection
    2. 5.2 Effect of Parasitic Elements
    3. 5.3 Effect of Rlim on DESAT Noise
  9. Safe Shutdown
    1. 6.1 Safe Shutdown Mechanisms
    2. 6.2 Safe Shutdown Considerations
  10. Short-Circuit Test Setup and Data
    1. 7.1 Short-Circuit Bench Measurement Setup
    2. 7.2 SC Board Setup for Data Collection
    3. 7.3 Different Circuit Configurations for SC Testing
    4. 7.4 Bench Measurement Results
    5. 7.5 Overall Summary of SiC vs IGBT Power Module SC Observation
  11. Key Consideration in Designing SC Protection Circuit
  12. Summary
  13. 10References

Abstract

Identifying and protecting short circuit (SC) and over current (OC) scenarios are critical for high power systems like HEV-EV traction inverters and EV charging and solar inverters system. In high-power systems, SiC FETs or IGBTs are generally used depending upon the power level and switching frequency. This application note discusses the key considerations and design approaches to implement the right protection circuit based on SiC FETs and IGBTs. It walks through the timings involved from detecting the SC/OC event to safe shut-down, the circuit implementation criteria and experiment data for both IGBT and SiC FETs. It summarizes the right protection driver for IGBTs and SiCs based on the released isolated gate drivers from TI.