SLYU067 December   2023 DRV5011 , DRV5012 , DRV5013 , DRV5013-Q1 , DRV5015 , DRV5015-Q1 , DRV5021 , DRV5021-Q1 , DRV5023 , DRV5023-Q1 , DRV5032 , DRV5033 , DRV5033-Q1 , DRV5053 , DRV5053-Q1 , DRV5055 , DRV5055-Q1 , DRV5056 , DRV5056-Q1 , DRV5057 , DRV5057-Q1 , TMAG3001 , TMAG5110 , TMAG5110-Q1 , TMAG5111 , TMAG5111-Q1 , TMAG5115 , TMAG5123 , TMAG5123-Q1 , TMAG5124 , TMAG5124-Q1 , TMAG5131-Q1 , TMAG5170 , TMAG5170-Q1 , TMAG5170D-Q1 , TMAG5173-Q1 , TMAG5231 , TMAG5253 , TMAG5273 , TMAG6180-Q1 , TMAG6181-Q1 , TMCS1107 , TMCS1108

 

  1.   1
  2.   Trademarks
  3.   Abstract
  4. 1Introduction and Features Overview
    1. 1.1 Simulating Magnetic Fields Tool Introduction
  5. 2Simulation Interface
    1. 2.1 Getting Started
    2. 2.2 Creating a New Design
    3. 2.3 Selecting a Sensor
    4. 2.4 Sensor Output Types
  6. 3Simulation Environment
  7. 4Simulation Inputs
    1. 4.1 Magnet Input Fields
      1. 4.1.1 Magnet Specifications
      2. 4.1.2 Magnet Geometry
      3. 4.1.3 Magnet Motion
      4. 4.1.4 Magnet Rotation
      5. 4.1.5 Hinge Magnet Motion
      6. 4.1.6 Linear Magnet Motion
      7. 4.1.7 Joystick Magnet Motion
    2. 4.2 Sensor Input Fields
      1. 4.2.1 Linear Sensor Format
      2. 4.2.2 Latch and Switch Format
      3. 4.2.3 Sensor Position
    3. 4.3 Simulation Settings
  8. 5Simulation Results
  9. 6Parametric Sweeps
  10. 7Comparing Designs
  11. 8Summary
  12. 9References
  13.   A Appendix
    1.     A.1 Sensor Placement
    2.     A.2 Magnet Materials
    3.     A.3 Rotation Tips

Creating a New Design

The Create New Design tool navigates to a selection window where the type of motion is selected (Figure 2-6). The options selected in this tool define the remainder of the simulation flow and constrain input parameters. Users must return to the TIMSS home screen and start again to change the motion function after starting the initial configuration.

GUID-20231114-SS0I-N1GQ-KJJK-GPLF7J3BBFKV-low.svg Figure 2-6 Motion Types

The five motion options are displayed in Table 2-2.

Table 2-2 Motion Type Descriptions
Function Motion Description Typical Applications
Hinge The magnet pivots around the X-axis. Lid closures, Lever positions, Door position
Linear The magnet travels in a linear path from the start position (X1,Y1,Z1) to a final position (X2,Y2,Z2). Linear Movers, Stroke Length Measurement, End of Travel, Liquid Level
Joystick The magnet pivots around the origin by some tilt angle by any direction within the XY plane. Joysticks, Levers
Rotation The magnet rotates around the Z axis. Angle Measurements, Liquid Level, Knobs, Motor commutation
Static Position The field at a single point is calculated. Magnet verification

Users can use the Hinge, Joystick, or Rotation option interchangeably where rotation is needed depending on system requirements. For instance, if rotating a magnet around the Y-axis is desired, set up a joystick simulation with the magnet centered at the origin. Similarly, rotating both the sensor (or sensors) and the magnet within the simulation space to use Z-axis rotation is possible. Regardless of the orientation chosen, the result produced in the simulation is in the sensor orientation.

Users can also select a starting magnet shape on the Create New Design page (Figure 2-7 and Table 2-3). This selection creates a simple dipole magnet of the specified shape in the simulation environment. This selection is the first step in updating and editing the magnet during the design process.

GUID-20231114-SS0I-VPMK-S0BK-NH3RKDBDWQB0-low.svg Figure 2-7 Magnet Shapes
Table 2-3 Magnet Shape Descriptions
Magnet Shape Default Polarization Pole Count Options
Bar Magnet Z-axis Even increments of poles cause the default magnet orientation to be subdivided along the X-axis length of the magnetD.
Diametric Cylinder Y-axis with circular faces aligned in Z-direction 2
Axial Cylinder Z-axis with circular faces aligned in Z-direction 2
Ring Radially with circular faces aligned in Z-direction Even increments of poles refer to number of poles observed when tracing the outer diameter
Axial Ring Z-axis with circular faces aligned in Z-direction For counts greater than 2, pole count is a multiple of 4. The count refers to the number of poles observed when tracing the outer diameter.
Sphere Z-Axis 2