SPRABV4H October   2021  – April 2024 SM320F28335-EP , SM320F28335-HT , TMS320F280023-Q1 , TMS320F280025-Q1 , TMS320F280025C-Q1 , TMS320F280033 , TMS320F280034 , TMS320F280034-Q1 , TMS320F280036-Q1 , TMS320F280036C-Q1 , TMS320F280037 , TMS320F280037-Q1 , TMS320F280037C , TMS320F280037C-Q1 , TMS320F280038-Q1 , TMS320F280038C-Q1 , TMS320F280039 , TMS320F280039-Q1 , TMS320F280039C , TMS320F280039C-Q1 , TMS320F280040-Q1 , TMS320F280040C-Q1 , TMS320F280041 , TMS320F280041-Q1 , TMS320F280041C , TMS320F280041C-Q1 , TMS320F280045 , TMS320F280048-Q1 , TMS320F280048C-Q1 , TMS320F280049 , TMS320F280049-Q1 , TMS320F280049C , TMS320F280049C-Q1 , TMS320F2802-Q1 , TMS320F28020 , TMS320F280200 , TMS320F28021 , TMS320F28022 , TMS320F28022-Q1 , TMS320F280220 , TMS320F28023 , TMS320F28023-Q1 , TMS320F280230 , TMS320F28026 , TMS320F28026-Q1 , TMS320F28026F , TMS320F28027 , TMS320F28027-Q1 , TMS320F280270 , TMS320F28027F , TMS320F28027F-Q1 , TMS320F28030 , TMS320F28030-Q1 , TMS320F28031 , TMS320F28031-Q1 , TMS320F28032 , TMS320F28032-Q1 , TMS320F28033 , TMS320F28033-Q1 , TMS320F28034 , TMS320F28034-Q1 , TMS320F28035 , TMS320F28035-EP , TMS320F28035-Q1 , TMS320F28050 , TMS320F28051 , TMS320F28052 , TMS320F28052-Q1 , TMS320F28052F , TMS320F28052F-Q1 , TMS320F28052M , TMS320F28052M-Q1 , TMS320F28053 , TMS320F28054 , TMS320F28054-Q1 , TMS320F28054F , TMS320F28054F-Q1 , TMS320F28054M , TMS320F28054M-Q1 , TMS320F28055 , TMS320F2806-Q1 , TMS320F28062 , TMS320F28062-Q1 , TMS320F28062F , TMS320F28062F-Q1 , TMS320F28063 , TMS320F28064 , TMS320F28065 , TMS320F28066 , TMS320F28066-Q1 , TMS320F28067 , TMS320F28067-Q1 , TMS320F28068F , TMS320F28068M , TMS320F28069 , TMS320F28069-Q1 , TMS320F28069F , TMS320F28069F-Q1 , TMS320F28069M , TMS320F28069M-Q1 , TMS320F28075 , TMS320F28075-Q1 , TMS320F28332 , TMS320F28333 , TMS320F28334 , TMS320F28335 , TMS320F28335-Q1 , TMS320F28374D , TMS320F28374S , TMS320F28375D , TMS320F28375S , TMS320F28375S-Q1 , TMS320F28376D , TMS320F28376S , TMS320F28377D , TMS320F28377D-EP , TMS320F28377D-Q1 , TMS320F28377S , TMS320F28377S-Q1 , TMS320F28379D , TMS320F28379D-Q1 , TMS320F28379S , TMS320F28P550SG , TMS320F28P550SJ , TMS320F28P559SJ-Q1

 

  1.   1
  2.   Abstract
  3.   Trademarks
  4. 1Introduction
  5. 2Programming Fundamentals
  6. 3ROM Bootloader
  7. 4Flash Kernel A
    1. 4.1 Implementation
      1. 4.1.1 Application Load
  8. 5Flash Kernel B
    1. 5.1 Implementation
      1. 5.1.1 Packet Format
      2. 5.1.2 CPU1 Kernel Commands
      3. 5.1.3 CPU2 Kernel Commands
      4. 5.1.4 Packet Data
      5. 5.1.5 Status Codes
    2. 5.2 F2838x SCI Flash Kernels
      1. 5.2.1 CPU1-CPU2 Kernels
        1. 5.2.1.1 Kernel Commands
      2. 5.2.2 CPU1-CM Kernels
        1. 5.2.2.1 Kernel Commands
      3. 5.2.3 Using the Projects With SCI Bootloader
        1. 5.2.3.1 CPU1-CPU2
        2. 5.2.3.2 CPU1-CM
      4. 5.2.4 Using the Projects With Code Composer Studio (CCS) Software
        1. 5.2.4.1 CPU1-CPU2
        2. 5.2.4.2 CPU1-CM
    3. 5.3 F28P65x SCI Flash Kernel
      1. 5.3.1 CPU1 Kernel
        1. 5.3.1.1 Host-Kernel Communication: ControlCard
        2. 5.3.1.2 Host-Kernel Communication: LaunchPad Development Kit
        3. 5.3.1.3 Kernel Commands
      2. 5.3.2 Using the Projects With SCI Bootloader
        1. 5.3.2.1 CPU1
      3. 5.3.3 Using the Projects With CCS
        1. 5.3.3.1 CPU1
    4. 5.4 F28P55x SCI Flash Kernel
      1. 5.4.1 Implementation
        1. 5.4.1.1 Specifying the Flash Banks and Sectors of the Application
      2. 5.4.2 Kernel
      3. 5.4.3 Using the Project With SCI Bootloader
      4. 5.4.4 Using the Project with CCS
  9. 6Example Implementation
    1. 6.1 Device Setup
      1. 6.1.1 Flash Kernels
      2. 6.1.2 Hardware
    2. 6.2 Host Application: serial_flash_programmer
      1. 6.2.1 Overview
      2. 6.2.2 Building and Running serial_flash_programmer Using Visual Studio
      3. 6.2.3 Running serial_flash_programmer for F2806x (Flash Kernel A)
      4. 6.2.4 Running serial_flash_programmer for F2837xD (Flash Kernel B)
    3. 6.3 Host Application: Firmware Updates on F28004x With SCI Flash Kernel
      1. 6.3.1 Overview
      2. 6.3.2 Boot Pin Configurations
      3. 6.3.3 Using Three Boot Modes
      4. 6.3.4 Performing Live Firmware Updates
  10. 7Troubleshooting
    1. 7.1 General
    2. 7.2 SCI Boot
    3. 7.3 F2837x
      1. 7.3.1 F2837xS
      2. 7.3.2 F2837xD
      3. 7.3.3 F2837xD LaunchPad™
    4. 7.4 F28P65x
  11. 8References
  12. 9Revision History

Introduction

As applications grow in complexity, the need to fix bugs, add features, and otherwise modify embedded firmware is increasingly critical in end applications. Enabling functionality like this can be easily and inexpensively accomplished through the use of bootloaders.

A bootloader, also referred to as a ROM loader or simply loader, is a small piece of code that resides in the target device's boot-ROM memory that allows the loading and execution of code from an external host. In most cases, a communication peripheral such as Universal Asynchronous Receiver/Transmitter (UART) or Controller Area Network (CAN) is used to load code into the device rather than JTAG, which requires an expensive specialized tool.

Boot Pins are used to configure different boot modes using various peripherals that determine which ROM loader is invoked. In this report, the peripheral used is Serial Communications Interface (SCI, generally referred to as UART). The boot modes that are associated with the boot pins refer to the first instance of the peripheral - for SCI, the boot mode would be associated with SCIA.

C2000 devices partially solve the problem of firmware updates by including some basic loading utilities in ROM. Depending on the device and the communications peripherals present, code can be loaded into on-chip RAM using UART, Serial Peripheral Interface (SPI), Inter-Integrated Circuit (I2C), Ethernet, CAN, and a parallel mode using General Purpose Input/Outputs (GPIOs). A subset of these loaders is present in every C2000 device and they are very easy to use, but they can only load code into RAM. How does one bridge the gap and program their application code into non-volatile memory?

This application report aims to solve this problem by using a flash kernel. Flash kernels have been around for some time, but this document discusses the specifics of the kernels and the host application tool found in C2000Ware. While this implementation is targeted at C2000 devices using the SCI peripheral, the same principles apply to all devices in the C2000 product line and all communications options supported by the ROM loaders. A command line tool is provided to parse and transmit the application image from the host PC (Windows only) to the embedded device.

In summary, application programming to non-volatile memory like flash requires two steps:

  1. Use the SCI ROM bootloader to download a flash kernel to RAM.
  2. Run the flash kernel in RAM to download the application to flash.
GUID-20211018-SS0I-7KZR-GLBN-4TJLFHKX9FHW-low.jpg Figure 1-1 Flash Kernel Flow