SWRA670A April   2020  – October 2022 CC1350 , CC1352P , CC1352R , CC2400 , CC2420 , CC2430 , CC2500 , CC2520 , CC2530 , CC2538 , CC2540 , CC2541 , CC2543 , CC2544 , CC2545 , CC2564 , CC2590 , CC2591 , CC2592 , CC2620 , CC2630 , CC2640 , CC2650 , CC2652P , CC2652R , CC2652R7 , CC2652RSIP , CC3100 , CC3120 , CC3135 , CC3135MOD , CC3200 , CC3200MOD , CC3220MOD , CC3220MODA , CC3220R , CC3220S , CC3220SF , CC3230S , CC3230SF , CC3235MODAS , CC3235MODASF , CC3235MODS , CC3235MODSF , CC3235S , CC3235SF , WL1801MOD , WL1805MOD , WL1807MOD , WL1831

 

  1.   CE Regulations for SRDs Operating in License-Free 2.4 GHz/5 GHz Bands
  2.   Trademarks
  3. Introduction
  4. Regulation Overview
    1. 2.1 CEPT ERC Recommendation 70-03
  5. Radio Equipment Directive (RED)
    1. 3.1 Essential Requirements
    2. 3.2 Obligations of Manufacturers
    3. 3.3 Conformity of Radio Equipment
      1. 3.3.1 Presumption of Conformity of Radio Equipment
      2. 3.3.2 Conformity Assessment Procedure
      3. 3.3.3 EU Declaration of Conformity
      4. 3.3.4 Rules and Conditions for Affixing the CE Marking
      5. 3.3.5 Technical Documentation
    4. 3.4 Restrictions on Putting into Service
  6. ETSI EN 300 440
    1. 4.1 Technical Requirements
      1. 4.1.1 Environmental Profile
    2. 4.2 Transmitter Requirements
      1. 4.2.1 Transmitter Maximum Radiated Power (e.i.r.p.)
      2. 4.2.2 Permitted Range of Operating Frequencies
      3. 4.2.3 Unwanted Emissions in the Spurious Domain
      4. 4.2.4 Duty Cycle
      5. 4.2.5 Additional Requirements for FHSS Equipment
    3. 4.3 Receiver Requirements
      1. 4.3.1 Receiver Categories
      2. 4.3.2 Receiver Performance Criteria
      3. 4.3.3 Adjacent Channel Selectivity
      4. 4.3.4 Blocking or Desensitization
      5. 4.3.5 Spurious Radiations - Receiver
    4. 4.4 Spectrum Access Techniques
      1. 4.4.1 Listen Before Talk
        1. 4.4.1.1 LBT Timing Paramters
        2. 4.4.1.2 Receiver LBT Threshold and Transmitter Max On-Time
      2. 4.4.2 Detect And Avoid Technique (DAA)
  7. ETSI EN 300 328
    1. 5.1 Technical Requirements
      1. 5.1.1 Environmental Profile
    2. 5.2 Equipment Types
      1. 5.2.1 Wideband Data Transmission Equipment Types
      2. 5.2.2 Adaptive and Non-Adaptive Equipment
      3. 5.2.3 Receiver Categories
      4. 5.2.4 Antenna Types
    3. 5.3 Conformance Requirements
      1. 5.3.1 Conformance Requirements for Frequency Hopping Equipment
        1. 5.3.1.1  RF Output Power
        2. 5.3.1.2  Duty Cycle
        3. 5.3.1.3  Accumulated Transit Time, Frequency Occupation and Hopping Sequence
        4. 5.3.1.4  Hopping Frequency Separation
        5. 5.3.1.5  Medium Utilization (MU) Factor
        6. 5.3.1.6  Adaptivity (Adaptive FHSS)
          1. 5.3.1.6.1 Adaptive FHSS Using LBT
          2. 5.3.1.6.2 Adaptive FHSS Using DAA
          3. 5.3.1.6.3 Adaptive FHSSS - Short Control Signaling Transmissions
        7. 5.3.1.7  Occupied Channel Bandwidth
        8. 5.3.1.8  Transmitter Unwanted Emissions in the Out-of-Band Domain
        9. 5.3.1.9  Transmitter Unwanted Emissions in the Spurious Domain
        10. 5.3.1.10 Receiver Spurious Emissions
        11. 5.3.1.11 Receiver Blocking
        12. 5.3.1.12 Geo-Location Capability
      2. 5.3.2 Conformance Requirements for Wideband Data Transmission Equipment (Non-FHSS)
        1. 5.3.2.1  RF Output Power
        2. 5.3.2.2  Power Spectral Density
        3. 5.3.2.3  Duty Cycle, Tx-sequence and Tx-gap
        4. 5.3.2.4  Medium Utilization Factor
        5. 5.3.2.5  Adaptivity (Non-FHSS)
          1. 5.3.2.5.1 Adaptive Non-FHSS using LBT
            1. 5.3.2.5.1.1 Frame Based Equipment
            2. 5.3.2.5.1.2 Load Based Equipment
          2. 5.3.2.5.2 Adaptive Non-FHSS Using DAA
          3. 5.3.2.5.3 Adaptive Non-FHSS - Short Control Signaling Transmissions
        6. 5.3.2.6  Occupied Channel Bandwidth
        7. 5.3.2.7  Transmitter Unwanted Emissions in the Out-of-Band Domain
        8. 5.3.2.8  74
        9. 5.3.2.9  Transmitter Unwanted Emissions in the Spurious Domain
        10. 5.3.2.10 Receiver Spurious Emissions
        11. 5.3.2.11 Receiving Blocking
        12. 5.3.2.12 Geo-Location Capability
  8. ETSI EN 301 893
    1. 6.1 Technical Requirements
      1. 6.1.1 Environmental Profile
    2. 6.2 Conformance Requirements
      1. 6.2.1  Nominal Center Frequencies
      2. 6.2.2  Nominal Channel Bandwidth and Occupied Channel Bandwidth
      3. 6.2.3  RF Output Power, Transmit Power Control (TPC) and Power Density
      4. 6.2.4  Transmitter Unwanted Emissions - Outside the 5 GHz RLAN Bands
      5. 6.2.5  Transmitter Unwanted Emissions - Within 5 GHz RLAN Bands
      6. 6.2.6  Receiver Spurious Emissions
      7. 6.2.7  Dynamic Frequency Selection (DFS)
      8. 6.2.8  Adaptivity (Channel Access Mechanism)
        1. 6.2.8.1 Frame Based Equipment (FBE)
          1. 6.2.8.1.1 Initiating Device Channel Access Mechanism
          2. 6.2.8.1.2 Responding Device Channel Access Mechanism
        2. 6.2.8.2 Load Based Equipment (LBE)
          1. 6.2.8.2.1 Device Types - Load Based Equipment
          2. 6.2.8.2.2 Multi-Channel Operation - Load Based Equipment
          3. 6.2.8.2.3 Priority Classes - Load Based Equipment
          4. 6.2.8.2.4 ED Threshold Level - Load Based Equipment
          5. 6.2.8.2.5 Initiating Device Channel Access Mechanism - Load Based Equipment
          6. 6.2.8.2.6 Responding Device Channel Access Mechanism - Load Based Equipment
        3. 6.2.8.3 Short Control Signalling Transmissions (FBE and LBE)
      9. 6.2.9  Receiver Blocking
      10. 6.2.10 User Access Restrictions
      11. 6.2.11 Geo-Location Capability
  9. ETSI EN 301 489
    1. 7.1 Technical Requirements
    2. 7.2 Environment Classification
    3. 7.3 Test Conditions
    4. 7.4 RF Exclusion Bands
    5. 7.5 Performance Assessment
      1. 7.5.1 Equipment Classification
    6. 7.6 Performance Criteria
      1. 7.6.1 Minimum Performance Level
    7. 7.7 Emission Requirements
      1. 7.7.1 Radiated Emissions - Enclosure Port
      2. 7.7.2 Conducted Emissions - DC Power Input/Output Ports
      3. 7.7.3 Conducted Emissions - AC Mains Power Input/Output Ports
      4. 7.7.4 Harmonic Current Emissions - AC Mains Power Input Port
      5. 7.7.5 Voltage Fluctuations and Flicker - AC Mains Power Input Port
      6. 7.7.6 Conducted Emissions - Wired Network Ports
    8. 7.8 Immunity Requirements
      1. 7.8.1 RF Electromagnetic Field (80 MHz to 6000 MHz) - Enclosure Port
      2. 7.8.2 Electrostatic Discharge - Enclosure
      3. 7.8.3 Fast Transients - Common Mode
      4. 7.8.4 RF - Common Mode
      5. 7.8.5 Transients and Surges in the Vehicular Environment
      6. 7.8.6 Voltage Dips and Interruptions
      7. 7.8.7 Surges
  10. IEC 62368-1
    1. 8.1 Safety Requirements
  11. EN 62311
    1. 9.1 Requirements and Limits of EN 62311
  12. 10References
  13. 11Revision History
Load Based Equipment

Load Based Equipment may implement an LBT based spectrum sharing mechanism based on the Clear Channel Assessment (CCA) mode using energy detect as described in IEEE 802.11™ [i.3], clause 10, clause 11, clause 15, clause 16, clause 18 and clause 19; or in IEEE 802.15.4™ [i.4], clause 5, clause 6 and clause 10, providing the equipment complies with the conformance requirements referred in this section. Load Based Equipment not using any of the mechanisms referenced above should comply with the following minimum set of requirements:

  • Before a transmission or a burst of transmissions, the equipment should perform a Clear Channel Assessment (CCA) check using energy detect. The equipment should observe the operating channel for the duration of the CCA observation time which should be not less than 18 μs. The channel should be considered occupied if the energy level in the channel exceeds the threshold given in step 5 below. If the equipment finds the channel to be clear, it may transmit immediately.
  • If the equipment finds the channel occupied, it should not transmit on this channel. The equipment should perform an Extended CCA check in which the channel is observed for a random duration in the range between 18 μs and at least 160 μs. If the extended CCA check has determined the channel to be no longer occupied, the equipment may resume transmissions on this channel. If the Extended CCA time has determined the channel still to be occupied, it should perform new Extended CCA checks until the channel is no longer occupied.

    Please note that the Idle Period in between transmissions is considered to be the CCA or the Extended CCA check as there are no transmissions during this period.

    The equipment is allowed to switch to a non-adaptive mode and to continue transmissions on this channel providing it complies with the requirements applicable to non-adaptive equipment. Alternatively, the equipment is also allowed to continue Short Control Signalling Transmissions on this channel providing it complies with the requirements given in Signalling Transmissions section.
  • The total time that an equipment makes use of an RF channel is defined as the Channel Occupancy Time. This Channel Occupancy Time should be less than 13 ms, after which the device should perform a new CCA as described in step 1 above.
  • The equipment, upon correct reception of a transmission which was intended for this equipment can skip CCA and immediately (see also next paragraph) proceed with the transmission of management and control frames. A consecutive sequence of transmissions by the equipment without a new CCA should not exceed the maximum channel occupancy time as defined in step 3 above.

    For the purpose of multi-cast, the ACK transmissions (associated with the same data packet) of the individual devices are allowed to take place in a sequence.
  • The energy detection threshold for the CCA should be proportional to the transmit power of the transmitter: for a 20 dBm e.i.r.p. transmitter the CCA threshold level (TL) should be equal to or less than -70 dBm/MHz at the input to the receiver assuming a 0 dBi (receive) antenna assembly. This threshold level (TL) may be corrected for the (receive) antenna assembly gain (G); however, beamforming gain (Y) should not be taken into account. For power levels less than 20 dBm e.i.r.p., the CCA threshold level may be relaxed to:
    Equation 6. TL = -70 dBm/MHz + 10 × log10 (100 mW / Pout)
    Pout in mW e.i.r.p.
  • The equipment should comply with the requirements defined in step 1 to step 4 in the present clause in the presence of an unwanted CW signal as defined in Table 5-21.
Table 5-21 Limits on Unwanted Signal parameters - Load Based equipment
Wanted signal mean power from companion device Unwanted CW signal frequency (MHz) Unwanted CW signal power (dBm)
sufficient to maintain the link (3) 2395 or 2488.5 (1) -35 (2)
The highest frequency should be used for testing operating channels within the range 2400 MHz to 2442 MHz, while the lowest frequency should be used for testing operating channels within the range 2442 MHz to 2483.5 MHz.
A typical conducted value which can be used in most cases is -50 dBm/MHz.
The level specified is the level at the UUT receiver input assuming a 0 dBi antenna assembly gain. In case of conducted measurements, this level has to be corrected for the (in-band) antenna assembly gain (G). In case of radiated measurements, this level is equivalent to a power flux density (PFD) in front of the UUT antenna.