SWRA670A April   2020  – October 2022 CC1350 , CC1352P , CC1352R , CC2400 , CC2420 , CC2430 , CC2500 , CC2520 , CC2530 , CC2538 , CC2540 , CC2541 , CC2543 , CC2544 , CC2545 , CC2564 , CC2590 , CC2591 , CC2592 , CC2620 , CC2630 , CC2640 , CC2650 , CC2652P , CC2652R , CC2652R7 , CC2652RSIP , CC3100 , CC3120 , CC3135 , CC3135MOD , CC3200 , CC3200MOD , CC3220MOD , CC3220MODA , CC3220R , CC3220S , CC3220SF , CC3230S , CC3230SF , CC3235MODAS , CC3235MODASF , CC3235MODS , CC3235MODSF , CC3235S , CC3235SF , WL1801MOD , WL1805MOD , WL1807MOD , WL1831

 

  1.   CE Regulations for SRDs Operating in License-Free 2.4 GHz/5 GHz Bands
  2.   Trademarks
  3. Introduction
  4. Regulation Overview
    1. 2.1 CEPT ERC Recommendation 70-03
  5. Radio Equipment Directive (RED)
    1. 3.1 Essential Requirements
    2. 3.2 Obligations of Manufacturers
    3. 3.3 Conformity of Radio Equipment
      1. 3.3.1 Presumption of Conformity of Radio Equipment
      2. 3.3.2 Conformity Assessment Procedure
      3. 3.3.3 EU Declaration of Conformity
      4. 3.3.4 Rules and Conditions for Affixing the CE Marking
      5. 3.3.5 Technical Documentation
    4. 3.4 Restrictions on Putting into Service
  6. ETSI EN 300 440
    1. 4.1 Technical Requirements
      1. 4.1.1 Environmental Profile
    2. 4.2 Transmitter Requirements
      1. 4.2.1 Transmitter Maximum Radiated Power (e.i.r.p.)
      2. 4.2.2 Permitted Range of Operating Frequencies
      3. 4.2.3 Unwanted Emissions in the Spurious Domain
      4. 4.2.4 Duty Cycle
      5. 4.2.5 Additional Requirements for FHSS Equipment
    3. 4.3 Receiver Requirements
      1. 4.3.1 Receiver Categories
      2. 4.3.2 Receiver Performance Criteria
      3. 4.3.3 Adjacent Channel Selectivity
      4. 4.3.4 Blocking or Desensitization
      5. 4.3.5 Spurious Radiations - Receiver
    4. 4.4 Spectrum Access Techniques
      1. 4.4.1 Listen Before Talk
        1. 4.4.1.1 LBT Timing Paramters
        2. 4.4.1.2 Receiver LBT Threshold and Transmitter Max On-Time
      2. 4.4.2 Detect And Avoid Technique (DAA)
  7. ETSI EN 300 328
    1. 5.1 Technical Requirements
      1. 5.1.1 Environmental Profile
    2. 5.2 Equipment Types
      1. 5.2.1 Wideband Data Transmission Equipment Types
      2. 5.2.2 Adaptive and Non-Adaptive Equipment
      3. 5.2.3 Receiver Categories
      4. 5.2.4 Antenna Types
    3. 5.3 Conformance Requirements
      1. 5.3.1 Conformance Requirements for Frequency Hopping Equipment
        1. 5.3.1.1  RF Output Power
        2. 5.3.1.2  Duty Cycle
        3. 5.3.1.3  Accumulated Transit Time, Frequency Occupation and Hopping Sequence
        4. 5.3.1.4  Hopping Frequency Separation
        5. 5.3.1.5  Medium Utilization (MU) Factor
        6. 5.3.1.6  Adaptivity (Adaptive FHSS)
          1. 5.3.1.6.1 Adaptive FHSS Using LBT
          2. 5.3.1.6.2 Adaptive FHSS Using DAA
          3. 5.3.1.6.3 Adaptive FHSSS - Short Control Signaling Transmissions
        7. 5.3.1.7  Occupied Channel Bandwidth
        8. 5.3.1.8  Transmitter Unwanted Emissions in the Out-of-Band Domain
        9. 5.3.1.9  Transmitter Unwanted Emissions in the Spurious Domain
        10. 5.3.1.10 Receiver Spurious Emissions
        11. 5.3.1.11 Receiver Blocking
        12. 5.3.1.12 Geo-Location Capability
      2. 5.3.2 Conformance Requirements for Wideband Data Transmission Equipment (Non-FHSS)
        1. 5.3.2.1  RF Output Power
        2. 5.3.2.2  Power Spectral Density
        3. 5.3.2.3  Duty Cycle, Tx-sequence and Tx-gap
        4. 5.3.2.4  Medium Utilization Factor
        5. 5.3.2.5  Adaptivity (Non-FHSS)
          1. 5.3.2.5.1 Adaptive Non-FHSS using LBT
            1. 5.3.2.5.1.1 Frame Based Equipment
            2. 5.3.2.5.1.2 Load Based Equipment
          2. 5.3.2.5.2 Adaptive Non-FHSS Using DAA
          3. 5.3.2.5.3 Adaptive Non-FHSS - Short Control Signaling Transmissions
        6. 5.3.2.6  Occupied Channel Bandwidth
        7. 5.3.2.7  Transmitter Unwanted Emissions in the Out-of-Band Domain
        8. 5.3.2.8  74
        9. 5.3.2.9  Transmitter Unwanted Emissions in the Spurious Domain
        10. 5.3.2.10 Receiver Spurious Emissions
        11. 5.3.2.11 Receiving Blocking
        12. 5.3.2.12 Geo-Location Capability
  8. ETSI EN 301 893
    1. 6.1 Technical Requirements
      1. 6.1.1 Environmental Profile
    2. 6.2 Conformance Requirements
      1. 6.2.1  Nominal Center Frequencies
      2. 6.2.2  Nominal Channel Bandwidth and Occupied Channel Bandwidth
      3. 6.2.3  RF Output Power, Transmit Power Control (TPC) and Power Density
      4. 6.2.4  Transmitter Unwanted Emissions - Outside the 5 GHz RLAN Bands
      5. 6.2.5  Transmitter Unwanted Emissions - Within 5 GHz RLAN Bands
      6. 6.2.6  Receiver Spurious Emissions
      7. 6.2.7  Dynamic Frequency Selection (DFS)
      8. 6.2.8  Adaptivity (Channel Access Mechanism)
        1. 6.2.8.1 Frame Based Equipment (FBE)
          1. 6.2.8.1.1 Initiating Device Channel Access Mechanism
          2. 6.2.8.1.2 Responding Device Channel Access Mechanism
        2. 6.2.8.2 Load Based Equipment (LBE)
          1. 6.2.8.2.1 Device Types - Load Based Equipment
          2. 6.2.8.2.2 Multi-Channel Operation - Load Based Equipment
          3. 6.2.8.2.3 Priority Classes - Load Based Equipment
          4. 6.2.8.2.4 ED Threshold Level - Load Based Equipment
          5. 6.2.8.2.5 Initiating Device Channel Access Mechanism - Load Based Equipment
          6. 6.2.8.2.6 Responding Device Channel Access Mechanism - Load Based Equipment
        3. 6.2.8.3 Short Control Signalling Transmissions (FBE and LBE)
      9. 6.2.9  Receiver Blocking
      10. 6.2.10 User Access Restrictions
      11. 6.2.11 Geo-Location Capability
  9. ETSI EN 301 489
    1. 7.1 Technical Requirements
    2. 7.2 Environment Classification
    3. 7.3 Test Conditions
    4. 7.4 RF Exclusion Bands
    5. 7.5 Performance Assessment
      1. 7.5.1 Equipment Classification
    6. 7.6 Performance Criteria
      1. 7.6.1 Minimum Performance Level
    7. 7.7 Emission Requirements
      1. 7.7.1 Radiated Emissions - Enclosure Port
      2. 7.7.2 Conducted Emissions - DC Power Input/Output Ports
      3. 7.7.3 Conducted Emissions - AC Mains Power Input/Output Ports
      4. 7.7.4 Harmonic Current Emissions - AC Mains Power Input Port
      5. 7.7.5 Voltage Fluctuations and Flicker - AC Mains Power Input Port
      6. 7.7.6 Conducted Emissions - Wired Network Ports
    8. 7.8 Immunity Requirements
      1. 7.8.1 RF Electromagnetic Field (80 MHz to 6000 MHz) - Enclosure Port
      2. 7.8.2 Electrostatic Discharge - Enclosure
      3. 7.8.3 Fast Transients - Common Mode
      4. 7.8.4 RF - Common Mode
      5. 7.8.5 Transients and Surges in the Vehicular Environment
      6. 7.8.6 Voltage Dips and Interruptions
      7. 7.8.7 Surges
  10. IEC 62368-1
    1. 8.1 Safety Requirements
  11. EN 62311
    1. 9.1 Requirements and Limits of EN 62311
  12. 10References
  13. 11Revision History
Responding Device Channel Access Mechanism

A Responding Device that receives a grant from a Initiating Device to transmit on the current Operating Channel within the current Fixed Frame Period should follow the procedure described in following steps 1 to 3:

  1. A Responding Device that received a transmission grant from an associated Initiating Device may proceed with transmissions on the current Operating Channel:
    1. The Responding Device may proceed with such transmissions without performing a Clear Channel Assessment (CCA) if these transmissions are initiated at most 16 μs after the last transmission by the Initiating Device that issued the grant.
    2. The Responding Device that does not proceed with such transmissions within 16 μs after the last transmission from the Initiating Device that issued the grant, should perform a Clear Channel Assessment (CCA) on the Operating Channel during a single observation slot within a 25 μs period ending immediately before the granted transmission time. If energy was detected with a level above the ED Threshold Level (TL) defined in Table 6-7, the Responding Device should proceed with step 3. Otherwise, the Responding Device should proceed with step 2.
  2. The Responding Device may perform transmissions on the current Operating Channel for the remaining Channel Occupancy Time of the current Fixed Frame Period. The Responding Device may have multiple transmissions on this Operating Channel provided that the gap in between such transmissions does not exceed 16 μs. When the transmissions by the Responding Device are completed the Responding Device should proceed with step 3.
  3. The transmission grant for the Responding Device is withdrawn.