Product details

Number of channels 1 Vs (min) (V) 2.7 Vs (max) (V) 5.5 Input type Differential Output type Single-ended Vos (offset voltage at 25°C) (typ) (mV) 0.0009 Input voltage noise (typ) (µV√Hz) 0.025 Interface type Parallel, SPI BW at Acl (MHz) 24 Acl, min spec gain (V/V) 10 Architecture CMOS Features Decompensated, Fault Detection, Shutdown Slew rate (typ) (V/µs) 5 Iq per channel (typ) (mA) 1.8 Gain (max) (dB) 60 Gain error (typ) (%) 0.03 Gain drift (max) (ppm/°C) 16 Rating Catalog Operating temperature range (°C) -40 to 125
Number of channels 1 Vs (min) (V) 2.7 Vs (max) (V) 5.5 Input type Differential Output type Single-ended Vos (offset voltage at 25°C) (typ) (mV) 0.0009 Input voltage noise (typ) (µV√Hz) 0.025 Interface type Parallel, SPI BW at Acl (MHz) 24 Acl, min spec gain (V/V) 10 Architecture CMOS Features Decompensated, Fault Detection, Shutdown Slew rate (typ) (V/µs) 5 Iq per channel (typ) (mA) 1.8 Gain (max) (dB) 60 Gain error (typ) (%) 0.03 Gain drift (max) (ppm/°C) 16 Rating Catalog Operating temperature range (°C) -40 to 125
SOIC (D) 14 51.9 mm² 8.65 x 6 TSSOP (PW) 14 32 mm² 5 x 6.4

    Typical Values Unless Otherwise Noted, TA = 25°C

  • Supply Voltage 2.7V to 5.5V
  • Supply Current 1.8 mA
  • Max Gain Error 0.15%
  • Max Gain Drift 16 ppm/°C
  • Min CMRR 110 dB
  • Max Offset Voltage 10 µV
  • Max Offset Voltage Drift 50 nV/°C
  • GBW (Gain = 10) 8 MHz
  • Max Non-Linearity 100 ppm
  • Operating Temperature Range −40°C to 125°C
  • Input Fault Detection
  • SPI or Pin Configurable Modes
  • EMIRR at 1.8GHz 92 dB
  • 14-Pin SOIC and 14-Pin TSSOP Package

All trademarks are the property of their respective owners.

    Typical Values Unless Otherwise Noted, TA = 25°C

  • Supply Voltage 2.7V to 5.5V
  • Supply Current 1.8 mA
  • Max Gain Error 0.15%
  • Max Gain Drift 16 ppm/°C
  • Min CMRR 110 dB
  • Max Offset Voltage 10 µV
  • Max Offset Voltage Drift 50 nV/°C
  • GBW (Gain = 10) 8 MHz
  • Max Non-Linearity 100 ppm
  • Operating Temperature Range −40°C to 125°C
  • Input Fault Detection
  • SPI or Pin Configurable Modes
  • EMIRR at 1.8GHz 92 dB
  • 14-Pin SOIC and 14-Pin TSSOP Package

All trademarks are the property of their respective owners.

The LMP8358 is a precision programmable-gain instrumentation amplifier in TI's LMP precision amplifier family. Its gain can be programmed to 10, 20, 50, 100, 200, 500, or 1000 through an SPI-compatible serial interface or through a parallel interface. Alternatively, its gain can be set to an arbitrary value using two external resistors. The LMP8358 uses patented techniques to measure and continuously correct its input offset voltage, eliminating offset drift over time and temperature and the effect of 1/f noise. Its ground-sensing CMOS input features a high CMRR and low input bias currents. It is capable of sensing differential input voltages in a common-mode range that extends from 100mV below the negative supply to 1.4V below the positive supply, making it an ideal solution for interfacing with ground-referenced sensors, supply-referenced sensor bridges, and any other application requiring precision and long-term stability. Additionally, the LMP8358 includes fault detection circuitry to detect open and shorted inputs and deteriorating connections to the signal source. Other features that make the LMP8358 a versatile solution for many applications are its rail-to-rail output, low input voltage noise and high gain-bandwidth product.

The LMP8358 is a precision programmable-gain instrumentation amplifier in TI's LMP precision amplifier family. Its gain can be programmed to 10, 20, 50, 100, 200, 500, or 1000 through an SPI-compatible serial interface or through a parallel interface. Alternatively, its gain can be set to an arbitrary value using two external resistors. The LMP8358 uses patented techniques to measure and continuously correct its input offset voltage, eliminating offset drift over time and temperature and the effect of 1/f noise. Its ground-sensing CMOS input features a high CMRR and low input bias currents. It is capable of sensing differential input voltages in a common-mode range that extends from 100mV below the negative supply to 1.4V below the positive supply, making it an ideal solution for interfacing with ground-referenced sensors, supply-referenced sensor bridges, and any other application requiring precision and long-term stability. Additionally, the LMP8358 includes fault detection circuitry to detect open and shorted inputs and deteriorating connections to the signal source. Other features that make the LMP8358 a versatile solution for many applications are its rail-to-rail output, low input voltage noise and high gain-bandwidth product.

Download View video with transcript Video

Similar products you might be interested in

open-in-new Compare alternates
Same functionality with different pin-out to the compared device
PGA113 ACTIVE Zero-drift, 100-µV offset, 12-nV/√Hz noise, RRO (scope gain) programmable gain amp with 2-ch mux Dual-channel scope gains with SPI Interface

Technical documentation

star =Top documentation for this product selected by TI
No results found. Please clear your search and try again.
View all 3
Type Title Date
* Data sheet LMP8358 Zero-Drift, Programmable Instrumentation Amplifier with Diagnostics datasheet (Rev. B) 27 Mar 2013
EVM User's guide LMP8358 Evaluation Board User Guide 21 Feb 2012
Application note Going Beyond the Front End Zero-Drift, Program Instrumentation Amp w/Diagnostics 20 May 2010

Design & development

For additional terms or required resources, click any title below to view the detail page where available.

Simulation tool

PSPICE-FOR-TI — PSpice® for TI design and simulation tool

PSpice® for TI is a design and simulation environment that helps evaluate functionality of analog circuits. This full-featured, design and simulation suite uses an analog analysis engine from Cadence®. Available at no cost, PSpice for TI includes one of the largest model libraries in the (...)
Simulation tool

TINA-TI — SPICE-based analog simulation program

TINA-TI provides all the conventional DC, transient and frequency domain analysis of SPICE and much more. TINA has extensive post-processing capability that allows you to format results the way you want them. Virtual instruments allow you to select input waveforms and probe circuit nodes voltages (...)
User guide: PDF
Package Pins CAD symbols, footprints & 3D models
SOIC (D) 14 Ultra Librarian
TSSOP (PW) 14 Ultra Librarian

Ordering & quality

Information included:
  • RoHS
  • REACH
  • Device marking
  • Lead finish/Ball material
  • MSL rating/Peak reflow
  • MTBF/FIT estimates
  • Material content
  • Qualification summary
  • Ongoing reliability monitoring
Information included:
  • Fab location
  • Assembly location

Support & training

TI E2E™ forums with technical support from TI engineers

Content is provided "as is" by TI and community contributors and does not constitute TI specifications. See terms of use.

If you have questions about quality, packaging or ordering TI products, see TI support. ​​​​​​​​​​​​​​

Videos