The 'LVT162240 devices are 16-bit buffers/drivers designed specifically for low-voltage (3.3-V) VCC operation and to improve both the performance and density of 3-state memory address drivers, clock drivers, and bus-oriented receivers and transmitters. They have the capability to provide a TTL interface to a 5-V system environment.
These devices can be used as four 4-bit buffers, two 8-bit buffers, or one 16-bit buffer and provide inverting outputs and symmetrical active-low output-enable (OE) inputs.
The outputs, which are designed to source or sink up to 12 mA, include equivalent 22- series resistors to reduce overshoot and undershoot.
When VCC, is between 0 and 1.5 V, the devices are in the high-impedance state during power up or power down. However, to ensure the high-impedance state above 1.5 V, OE should be tied to VCC through a pullup resistor; the minimum value of the resistor is determined by the current-sinking capability of the driver.
These devices are fully specified for hot-insertion applications using Ioff and power-up 3-state. The Ioff circuitry disables the outputs, preventing damaging current backflow through the devices when they are powered down. The power-up 3-state circuitry places the outputs in the high-impedance state during power up and power down, which prevents driver conflict.
The SN54LVT162240 is characterized for operation over the full military temperature range of -55°C to 125°C. The SN74LVT162240 is characterized for operation from -40°C to 85°C.
The 'LVT162240 devices are 16-bit buffers/drivers designed specifically for low-voltage (3.3-V) VCC operation and to improve both the performance and density of 3-state memory address drivers, clock drivers, and bus-oriented receivers and transmitters. They have the capability to provide a TTL interface to a 5-V system environment.
These devices can be used as four 4-bit buffers, two 8-bit buffers, or one 16-bit buffer and provide inverting outputs and symmetrical active-low output-enable (OE) inputs.
The outputs, which are designed to source or sink up to 12 mA, include equivalent 22- series resistors to reduce overshoot and undershoot.
When VCC, is between 0 and 1.5 V, the devices are in the high-impedance state during power up or power down. However, to ensure the high-impedance state above 1.5 V, OE should be tied to VCC through a pullup resistor; the minimum value of the resistor is determined by the current-sinking capability of the driver.
These devices are fully specified for hot-insertion applications using Ioff and power-up 3-state. The Ioff circuitry disables the outputs, preventing damaging current backflow through the devices when they are powered down. The power-up 3-state circuitry places the outputs in the high-impedance state during power up and power down, which prevents driver conflict.
The SN54LVT162240 is characterized for operation over the full military temperature range of -55°C to 125°C. The SN74LVT162240 is characterized for operation from -40°C to 85°C.