SN74LVTH18646A

ACTIVE

Product details

Supply voltage (min) (V) 2.7 Supply voltage (max) (V) 3.6 Number of channels 18 IOL (max) (mA) 32 IOH (max) (mA) -32 Input type TTL-Compatible CMOS Output type 3-State Features Balanced outputs, Bus-hold, Partial power down (Ioff), Positive input clamp diode, Very high speed (tpd 5-10ns) Technology family LVT Rating Catalog Operating temperature range (°C) -40 to 85
Supply voltage (min) (V) 2.7 Supply voltage (max) (V) 3.6 Number of channels 18 IOL (max) (mA) 32 IOH (max) (mA) -32 Input type TTL-Compatible CMOS Output type 3-State Features Balanced outputs, Bus-hold, Partial power down (Ioff), Positive input clamp diode, Very high speed (tpd 5-10ns) Technology family LVT Rating Catalog Operating temperature range (°C) -40 to 85
LQFP (PM) 64 144 mm² 12 x 12
  • Members of the Texas Instruments SCOPETM Family of Testability Products
  • Members of the Texas Instruments WidebusTM Family
  • State-of-the-Art 3.3-V ABT Design Supports Mixed-Mode Signal Operation (5-V Input and Output Voltages With 3.3-V VCC)
  • Support Unregulated Battery Operation Down to 2.7 V
  • Include D-Type Flip-Flops and Control Circuitry to Provide Multiplexed Transmission of Stored and Real-Time Data
  • Bus Hold on Data Inputs Eliminates the Need for External Pullup/Pulldown Resistors
  • B-Port Outputs of 'LVTH182646A Devices Have Equivalent 25- Series Resistors, So No External Resistors Are Required
  • Compatible With IEEE Std 1149.1-1990 (JTAG) Test Access Port and Boundary-Scan Architecture
  • SCOPE Instruction Set
    • IEEE Std 1149.1-1990 Required Instructions and Optional CLAMP and HIGHZ
    • Parallel-Signature Analysis at Inputs
    • Pseudo-Random Pattern Generation From Outputs
    • Sample Inputs/Toggle Outputs
    • Binary Count From Outputs
    • Device Identification
    • Even-Parity Opcodes
  • Packaged in 64-Pin Plastic Thin Quad Flat (PM) Packages Using 0.5-mm Center-to-Center Spacings and 68-Pin Ceramic Quad Flat (HV) Packages Using 25-mil Center-to-Center Spacings

    SCOPE and Widebus are trademarks of Texas Instruments Incorporated.

  • Members of the Texas Instruments SCOPETM Family of Testability Products
  • Members of the Texas Instruments WidebusTM Family
  • State-of-the-Art 3.3-V ABT Design Supports Mixed-Mode Signal Operation (5-V Input and Output Voltages With 3.3-V VCC)
  • Support Unregulated Battery Operation Down to 2.7 V
  • Include D-Type Flip-Flops and Control Circuitry to Provide Multiplexed Transmission of Stored and Real-Time Data
  • Bus Hold on Data Inputs Eliminates the Need for External Pullup/Pulldown Resistors
  • B-Port Outputs of 'LVTH182646A Devices Have Equivalent 25- Series Resistors, So No External Resistors Are Required
  • Compatible With IEEE Std 1149.1-1990 (JTAG) Test Access Port and Boundary-Scan Architecture
  • SCOPE Instruction Set
    • IEEE Std 1149.1-1990 Required Instructions and Optional CLAMP and HIGHZ
    • Parallel-Signature Analysis at Inputs
    • Pseudo-Random Pattern Generation From Outputs
    • Sample Inputs/Toggle Outputs
    • Binary Count From Outputs
    • Device Identification
    • Even-Parity Opcodes
  • Packaged in 64-Pin Plastic Thin Quad Flat (PM) Packages Using 0.5-mm Center-to-Center Spacings and 68-Pin Ceramic Quad Flat (HV) Packages Using 25-mil Center-to-Center Spacings

    SCOPE and Widebus are trademarks of Texas Instruments Incorporated.

The 'LVTH18646A and 'LVTH182646A scan test devices with 18-bit bus transceivers and registers are members of the Texas Instruments (TI) SCOPE testability integrated-circuit family. This family of devices supports IEEE Std 1149.1-1990 boundary scan to facilitate testing of complex circuit board assemblies. Scan access to the test circuitry is accomplished via the 4-wire test access port (TAP) interface.

Additionally, these devices are designed specifically for low-voltage (3.3-V) VCC operation, but with the capability to provide a TTL interface to a 5-V system environment.

In the normal mode, these devices are 18-bit bus transceivers and registers that allow for multiplexed transmission of data directly from the input bus or from the internal registers. They can be used either as two 9-bit transceivers or one 18-bit transceiver. The test circuitry can be activated by the TAP to take snapshot samples of the data appearing at the device pins or to perform a self test on the boundary-test cells. Activating the TAP in the normal mode does not affect the functional operation of the SCOPE bus transceivers and registers.

Transceiver function is controlled by output-enable (OE\) and direction (DIR) inputs. When OE\ is low, the transceiver is active and operates in the A-to-B direction when DIR is high or in the B-to-A direction when DIR is low. When OE\ is high, both the A and B outputs are in the high-impedance state, effectively isolating both buses.

Data flow is controlled by clock (CLKAB and CLKBA) and select (SAB and SBA) inputs. Data on the A bus is clocked into the associated registers on the low-to-high transition of CLKAB. When SAB is low, real-time A data is selected for presentation to the B bus (transparent mode). When SAB is high, stored A data is selected for presentation to the B bus (registered mode). The function of the CLKBA and SBA inputs mirrors that of CLKAB and SAB, respectively. Figure 1 shows the four fundamental bus-management functions that can be performed with the 'LVTH18646A and 'LVTH182646A.

In the test mode, the normal operation of the SCOPE bus transceivers and registers is inhibited, and the test circuitry is enabled to observe and control the I/O boundary of the device. When enabled, the test circuitry performs boundary-scan test operations according to the protocol described in IEEE Std 1149.1-1990.

Four dedicated test pins are used to observe and control the operation of the test circuitry: test data input (TDI), test data output (TDO), test mode select (TMS), and test clock (TCK). Additionally, the test circuitry performs other testing functions such as parallel-signature analysis (PSA) on data inputs and pseudo-random pattern generation (PRPG) from data outputs. All testing and scan operations are synchronized to the TAP interface.

Active bus-hold circuitry is provided to hold unused or floating data inputs at a valid logic level.

The B-port outputs of 'LVTH182646A, which are designed to source or sink up to 12 mA, include equivalent 25- series resistors to reduce overshoot and undershoot.

The SN54LVT18646 and SN54LVTH182646A are characterized for operation over the full military temperature range of -55°C to 125°C. The SN74LVTH18646A and SN74LVTH182646A are characterized for operation from -40°C to 85°C.

The 'LVTH18646A and 'LVTH182646A scan test devices with 18-bit bus transceivers and registers are members of the Texas Instruments (TI) SCOPE testability integrated-circuit family. This family of devices supports IEEE Std 1149.1-1990 boundary scan to facilitate testing of complex circuit board assemblies. Scan access to the test circuitry is accomplished via the 4-wire test access port (TAP) interface.

Additionally, these devices are designed specifically for low-voltage (3.3-V) VCC operation, but with the capability to provide a TTL interface to a 5-V system environment.

In the normal mode, these devices are 18-bit bus transceivers and registers that allow for multiplexed transmission of data directly from the input bus or from the internal registers. They can be used either as two 9-bit transceivers or one 18-bit transceiver. The test circuitry can be activated by the TAP to take snapshot samples of the data appearing at the device pins or to perform a self test on the boundary-test cells. Activating the TAP in the normal mode does not affect the functional operation of the SCOPE bus transceivers and registers.

Transceiver function is controlled by output-enable (OE\) and direction (DIR) inputs. When OE\ is low, the transceiver is active and operates in the A-to-B direction when DIR is high or in the B-to-A direction when DIR is low. When OE\ is high, both the A and B outputs are in the high-impedance state, effectively isolating both buses.

Data flow is controlled by clock (CLKAB and CLKBA) and select (SAB and SBA) inputs. Data on the A bus is clocked into the associated registers on the low-to-high transition of CLKAB. When SAB is low, real-time A data is selected for presentation to the B bus (transparent mode). When SAB is high, stored A data is selected for presentation to the B bus (registered mode). The function of the CLKBA and SBA inputs mirrors that of CLKAB and SAB, respectively. Figure 1 shows the four fundamental bus-management functions that can be performed with the 'LVTH18646A and 'LVTH182646A.

In the test mode, the normal operation of the SCOPE bus transceivers and registers is inhibited, and the test circuitry is enabled to observe and control the I/O boundary of the device. When enabled, the test circuitry performs boundary-scan test operations according to the protocol described in IEEE Std 1149.1-1990.

Four dedicated test pins are used to observe and control the operation of the test circuitry: test data input (TDI), test data output (TDO), test mode select (TMS), and test clock (TCK). Additionally, the test circuitry performs other testing functions such as parallel-signature analysis (PSA) on data inputs and pseudo-random pattern generation (PRPG) from data outputs. All testing and scan operations are synchronized to the TAP interface.

Active bus-hold circuitry is provided to hold unused or floating data inputs at a valid logic level.

The B-port outputs of 'LVTH182646A, which are designed to source or sink up to 12 mA, include equivalent 25- series resistors to reduce overshoot and undershoot.

The SN54LVT18646 and SN54LVTH182646A are characterized for operation over the full military temperature range of -55°C to 125°C. The SN74LVTH18646A and SN74LVTH182646A are characterized for operation from -40°C to 85°C.

Download View video with transcript Video

Technical documentation

star =Top documentation for this product selected by TI
No results found. Please clear your search and try again.
View all 19
Type Title Date
* Data sheet 3.3-V ABT Scan Test Devices With 18-Bit Transceivers And Registers datasheet (Rev. D) 01 Jun 1997
Application note Implications of Slow or Floating CMOS Inputs (Rev. E) 26 Jul 2021
Application note An Overview of Bus-Hold Circuit and the Applications (Rev. B) 17 Sep 2018
Selection guide Logic Guide (Rev. AB) 12 Jun 2017
Application note Understanding and Interpreting Standard-Logic Data Sheets (Rev. C) 02 Dec 2015
User guide LOGIC Pocket Data Book (Rev. B) 16 Jan 2007
EVM User's guide LASP Demo Board User's Guide 01 Nov 2005
Application note Programming CPLDs Via the 'LVT8986 LASP 01 Nov 2005
Application note Semiconductor Packing Material Electrostatic Discharge (ESD) Protection 08 Jul 2004
Application note TI IBIS File Creation, Validation, and Distribution Processes 29 Aug 2002
Application note 16-Bit Widebus Logic Families in 56-Ball, 0.65-mm Pitch Very Thin Fine-Pitch BGA (Rev. B) 22 May 2002
Application note Power-Up 3-State (PU3S) Circuits in TI Standard Logic Devices 10 May 2002
Selection guide Advanced Bus Interface Logic Selection Guide 09 Jan 2001
Application note LVT-to-LVTH Conversion 08 Dec 1998
Application note LVT Family Characteristics (Rev. A) 01 Mar 1998
Application note Bus-Interface Devices With Output-Damping Resistors Or Reduced-Drive Outputs (Rev. A) 01 Aug 1997
Application note Input and Output Characteristics of Digital Integrated Circuits 01 Oct 1996
Application note Live Insertion 01 Oct 1996
Application note Understanding Advanced Bus-Interface Products Design Guide 01 May 1996

Design & development

For additional terms or required resources, click any title below to view the detail page where available.

Simulation model

BSDL Model of SN74LVTH18646A

SCTM031.ZIP (3 KB) - BSDL Model
Simulation model

SN74LVTH18646A IBIS Model

SCTM045.ZIP (16 KB) - IBIS Model
Package Pins CAD symbols, footprints & 3D models
LQFP (PM) 64 Ultra Librarian

Ordering & quality

Information included:
  • RoHS
  • REACH
  • Device marking
  • Lead finish/Ball material
  • MSL rating/Peak reflow
  • MTBF/FIT estimates
  • Material content
  • Qualification summary
  • Ongoing reliability monitoring
Information included:
  • Fab location
  • Assembly location

Support & training

TI E2E™ forums with technical support from TI engineers

Content is provided "as is" by TI and community contributors and does not constitute TI specifications. See terms of use.

If you have questions about quality, packaging or ordering TI products, see TI support. ​​​​​​​​​​​​​​

Videos