The TS5V522C is high bandwidth analog switches offering a 2:2 dual-graphics crossover solution for VGA signal switching. The device is designed for switching between 2 VGA sources to either of the two destinations within a laptop computer. The TS5V522C integrates 5 very high-frequency 380Mhz (typ) SPDT switches for RGB signals, 2 pairs of level-translating buffer for the HSYNC and VSYNC lines, and integrated ESD protection. The 5 crossover switches can be
controlled by either 5V or 3.3V TTL control signals.
The TS5V522C would bypass the VGA analog signal to destination with less distortions. DDC Channel (SCA, SCL) may require to +5Vopen drain level at the VGA connector and it may require a pull up resistor on the destination side. Active undershoot-protection circuitry on the data ports of the TS5V522C provide protection for undershoots up to -2V by sensing an undershoot event and ensuring that the switch remains in the proper off state.
To ensure the high-impedance state during power up or power down, OE should be tied to VCC through a pull up resistor; the minimum value of the resistor is determined by the current-sinking capability of the driver.
The TS5V522C is high bandwidth analog switches offering a 2:2 dual-graphics crossover solution for VGA signal switching. The device is designed for switching between 2 VGA sources to either of the two destinations within a laptop computer. The TS5V522C integrates 5 very high-frequency 380Mhz (typ) SPDT switches for RGB signals, 2 pairs of level-translating buffer for the HSYNC and VSYNC lines, and integrated ESD protection. The 5 crossover switches can be
controlled by either 5V or 3.3V TTL control signals.
The TS5V522C would bypass the VGA analog signal to destination with less distortions. DDC Channel (SCA, SCL) may require to +5Vopen drain level at the VGA connector and it may require a pull up resistor on the destination side. Active undershoot-protection circuitry on the data ports of the TS5V522C provide protection for undershoots up to -2V by sensing an undershoot event and ensuring that the switch remains in the proper off state.
To ensure the high-impedance state during power up or power down, OE should be tied to VCC through a pull up resistor; the minimum value of the resistor is determined by the current-sinking capability of the driver.