SN74ALVCH16825

ACTIVE

Product details

Technology family ALVC Supply voltage (min) (V) 1.65 Supply voltage (max) (V) 3.6 Number of channels 18 IOL (max) (mA) 24 Supply current (max) (µA) 40 IOH (max) (mA) -24 Input type Standard CMOS Output type 3-State Features Balanced outputs, Bus-hold, Over-voltage tolerant inputs, Very high speed (tpd 5-10ns) Rating Catalog Operating temperature range (°C) -40 to 85
Technology family ALVC Supply voltage (min) (V) 1.65 Supply voltage (max) (V) 3.6 Number of channels 18 IOL (max) (mA) 24 Supply current (max) (µA) 40 IOH (max) (mA) -24 Input type Standard CMOS Output type 3-State Features Balanced outputs, Bus-hold, Over-voltage tolerant inputs, Very high speed (tpd 5-10ns) Rating Catalog Operating temperature range (°C) -40 to 85
SSOP (DL) 56 190.647 mm² 18.42 x 10.35 TSSOP (DGG) 56 113.4 mm² 14 x 8.1
  • Member of the Texas Instruments Widebus™ Family
  • EPIC™ (Enhanced-Performance Implanted CMOS) Submicron Process
  • ESD Protection Exceeds 2000 V Per MIL-STD-883, Method 3015; Exceeds 200 V Using Machine Model (C = 200 pF, R = 0)
  • Latch-Up Performance Exceeds 250 mA Per JESD 17
  • Bus Hold on Data Inputs Eliminates the Need for External Pullup/Pulldown Resistors
  • Package Options Include Plastic 300-mil Shrink Small-Outline (DL) and Thin Shrink Small-Outline (DGG) Packages

Widebus, EPIC are trademarks of Texas Instruments.

  • Member of the Texas Instruments Widebus™ Family
  • EPIC™ (Enhanced-Performance Implanted CMOS) Submicron Process
  • ESD Protection Exceeds 2000 V Per MIL-STD-883, Method 3015; Exceeds 200 V Using Machine Model (C = 200 pF, R = 0)
  • Latch-Up Performance Exceeds 250 mA Per JESD 17
  • Bus Hold on Data Inputs Eliminates the Need for External Pullup/Pulldown Resistors
  • Package Options Include Plastic 300-mil Shrink Small-Outline (DL) and Thin Shrink Small-Outline (DGG) Packages

Widebus, EPIC are trademarks of Texas Instruments.

This 18-bit buffer and line driver is designed for 1.65-V to 3.6-V VCC operation.

This SN74ALVCH16825 improves the performance and density of 3-state memory address drivers, clock drivers, and bus-oriented receivers and transmitters.

The device can be used as two 9-bit buffers or one 18-bit buffer. It provides true data.

The 3-state control gate is a 2-input AND gate with active-low inputs so that if either output-enable (OE1\ or OE2\) input is high, all nine affected outputs are in the high-impedance state.

To ensure the high-impedance state during power up or power down, OE\ should be tied to VCC through a pullup resistor; the minimum value of the resistor is determined by the current-sinking capability of the driver.

Active bus-hold circuitry is provided to hold unused or floating inputs at a valid logic level.

The SN74ALVCH16825 is characterized for operation from &$150;40°C to 85°C.

This 18-bit buffer and line driver is designed for 1.65-V to 3.6-V VCC operation.

This SN74ALVCH16825 improves the performance and density of 3-state memory address drivers, clock drivers, and bus-oriented receivers and transmitters.

The device can be used as two 9-bit buffers or one 18-bit buffer. It provides true data.

The 3-state control gate is a 2-input AND gate with active-low inputs so that if either output-enable (OE1\ or OE2\) input is high, all nine affected outputs are in the high-impedance state.

To ensure the high-impedance state during power up or power down, OE\ should be tied to VCC through a pullup resistor; the minimum value of the resistor is determined by the current-sinking capability of the driver.

Active bus-hold circuitry is provided to hold unused or floating inputs at a valid logic level.

The SN74ALVCH16825 is characterized for operation from &$150;40°C to 85°C.

Download View video with transcript Video

Technical documentation

star =Top documentation for this product selected by TI
No results found. Please clear your search and try again.
View all 19
Type Title Date
* Data sheet SN74ALVCH16825 datasheet (Rev. D) 02 Sep 2004
Application note An Overview of Bus-Hold Circuit and the Applications (Rev. B) 17 Sep 2018
Selection guide Logic Guide (Rev. AB) 12 Jun 2017
Application note Understanding and Interpreting Standard-Logic Data Sheets (Rev. C) 02 Dec 2015
User guide LOGIC Pocket Data Book (Rev. B) 16 Jan 2007
Application note Semiconductor Packing Material Electrostatic Discharge (ESD) Protection 08 Jul 2004
Application note TI IBIS File Creation, Validation, and Distribution Processes 29 Aug 2002
User guide ALVC Advanced Low-Voltage CMOS Including SSTL, HSTL, And ALB (Rev. B) 01 Aug 2002
More literature Standard Linear & Logic for PCs, Servers & Motherboards 13 Jun 2002
Application note 16-Bit Widebus Logic Families in 56-Ball, 0.65-mm Pitch Very Thin Fine-Pitch BGA (Rev. B) 22 May 2002
Application note Benefits & Issues of Migrating 5-V and 3.3-V Logic to Lower-Voltage Supplies (Rev. A) 08 Sep 1999
Application note TI SN74ALVC16835 Component Specification Analysis for PC100 03 Aug 1998
Application note Logic Solutions for PC-100 SDRAM Registered DIMMs (Rev. A) 13 May 1998
Application note Migration From 3.3-V To 2.5-V Power Supplies For Logic Devices 01 Dec 1997
Application note Bus-Interface Devices With Output-Damping Resistors Or Reduced-Drive Outputs (Rev. A) 01 Aug 1997
Application note CMOS Power Consumption and CPD Calculation (Rev. B) 01 Jun 1997
Application note Input and Output Characteristics of Digital Integrated Circuits 01 Oct 1996
Application note Live Insertion 01 Oct 1996
Application note Understanding Advanced Bus-Interface Products Design Guide 01 May 1996

Design & development

For additional terms or required resources, click any title below to view the detail page where available.

Simulation model

SN74ALVCH16825 Behavioral SPICE Model

SCEM753.ZIP (7 KB) - PSpice Model
Package Pins CAD symbols, footprints & 3D models
SSOP (DL) 56 Ultra Librarian
TSSOP (DGG) 56 Ultra Librarian

Ordering & quality

Information included:
  • RoHS
  • REACH
  • Device marking
  • Lead finish/Ball material
  • MSL rating/Peak reflow
  • MTBF/FIT estimates
  • Material content
  • Qualification summary
  • Ongoing reliability monitoring
Information included:
  • Fab location
  • Assembly location

Support & training

TI E2E™ forums with technical support from TI engineers

Content is provided "as is" by TI and community contributors and does not constitute TI specifications. See terms of use.

If you have questions about quality, packaging or ordering TI products, see TI support. ​​​​​​​​​​​​​​

Videos