TLC27L1B

OBSOLETE

Single, 16-V, 85-kHz, low power (10-μA/ch), 2-mV offset voltage, In to V- operational amplifier

TLC27L1B is no longer in production
This product is no longer in production. New designs should consider an alternate product.
open-in-new Compare alternates
Drop-in replacement with upgraded functionality to the compared device
TLV27L1 ACTIVE Single, 16-V, 160-kHz operational amplifier Higher GBW (0.16 MHz), faster slew rate (0.06 V/us), lower power (0.007 mA), wider temperature range (-40 to 125, 0 to 70)
Pin-for-pin with same functionality to the compared device
TLV9101 ACTIVE Single, 16-V, 1.1-MHz, low-power operational amplifier Rail-to-rail I/O, higher GBW (1.1 MHz), faster slew rate (4.5 V/us), lower offset voltage (1.5 mV), lower noise (30 nV/√Hz), higher output current (80 mA)

Product details

Number of channels 1 Total supply voltage (+5 V = 5, ±5 V = 10) (max) (V) 16 Total supply voltage (+5 V = 5, ±5 V = 10) (min) (V) 3 Rail-to-rail In to V- GBW (typ) (MHz) 0.085 Slew rate (typ) (V/µs) 0.03 Vos (offset voltage at 25°C) (max) (mV) 2 Iq per channel (typ) (mA) 0.01 Vn at 1 kHz (typ) (nV√Hz) 68 Rating Catalog Operating temperature range (°C) 0 to 70 Offset drift (typ) (µV/°C) 1.1 Input bias current (max) (pA) 60 CMRR (typ) (dB) 94 Iout (typ) (A) 0.001 Architecture CMOS Input common mode headroom (to negative supply) (typ) (V) -0.3 Input common mode headroom (to positive supply) (typ) (V) -0.8 Output swing headroom (to negative supply) (typ) (V) 0.03 Output swing headroom (to positive supply) (typ) (V) -1.2
Number of channels 1 Total supply voltage (+5 V = 5, ±5 V = 10) (max) (V) 16 Total supply voltage (+5 V = 5, ±5 V = 10) (min) (V) 3 Rail-to-rail In to V- GBW (typ) (MHz) 0.085 Slew rate (typ) (V/µs) 0.03 Vos (offset voltage at 25°C) (max) (mV) 2 Iq per channel (typ) (mA) 0.01 Vn at 1 kHz (typ) (nV√Hz) 68 Rating Catalog Operating temperature range (°C) 0 to 70 Offset drift (typ) (µV/°C) 1.1 Input bias current (max) (pA) 60 CMRR (typ) (dB) 94 Iout (typ) (A) 0.001 Architecture CMOS Input common mode headroom (to negative supply) (typ) (V) -0.3 Input common mode headroom (to positive supply) (typ) (V) -0.8 Output swing headroom (to negative supply) (typ) (V) 0.03 Output swing headroom (to positive supply) (typ) (V) -1.2
  • Input Offset Voltage Drift . . . Typically 0.1 µV/Month, Including the First 30 Days
  • Wide Range of Supply Voltages Over Specified Temperature Range:
      0°C to 70°C . . . 3 V to 16 V
      40°C to 85°C . . . 4 V to 16 V
      55°C to 125°C . . . 5 V to 16 V
  • Single-Supply Operation
  • Common-Mode Input Voltage Range Extends Below the Negative Rail (C-Suffix and I-Suffix Types)
  • Low Noise . . . 68 nV/Hz Typically at f = 1 kHz
  • Output Voltage Range Includes Negative Rail
  • High Input Impedance . . . 1012 Typ
  • ESD-Protection Circuitry
  • Small-Outline Package Option Also Available in Tape and Reel
  • Designed-In Latch-Up Immunity

LinCMOS is a trademark of Texas Instruments.

  • Input Offset Voltage Drift . . . Typically 0.1 µV/Month, Including the First 30 Days
  • Wide Range of Supply Voltages Over Specified Temperature Range:
      0°C to 70°C . . . 3 V to 16 V
      40°C to 85°C . . . 4 V to 16 V
      55°C to 125°C . . . 5 V to 16 V
  • Single-Supply Operation
  • Common-Mode Input Voltage Range Extends Below the Negative Rail (C-Suffix and I-Suffix Types)
  • Low Noise . . . 68 nV/Hz Typically at f = 1 kHz
  • Output Voltage Range Includes Negative Rail
  • High Input Impedance . . . 1012 Typ
  • ESD-Protection Circuitry
  • Small-Outline Package Option Also Available in Tape and Reel
  • Designed-In Latch-Up Immunity

LinCMOS is a trademark of Texas Instruments.

The TLC27L1 operational amplifier combines a wide range of input offset-voltage grades with low offset-voltage drift and high input impedance. In addition, the TLC27L1 is a low-bias version of the TLC271 programmable amplifier. These devices use the Texas Instruments silicon-gate LinCMOS™ technology, which provides offset-voltage stability far exceeding the stability available with conventional metal-gate processes.

Three offset-voltage grades are available (C-suffix and I-suffix types), ranging from the low-cost TLC27L1 (10 mV) to the TLC27L1B (2 mV) low-offset version. The extremely high input impedance and low bias currents, in conjunction with good common-mode rejection and supply voltage rejection, make these devices a good choice for new state-of-the-art designs as well as for upgrading existing designs.

In general, many features associated with bipolar technology are available in LinCMOS™ operational amplifiers, without the power penalties of bipolar technology. General applications such as transducer interfacing, analog calculations, amplifier blocks, active filters, and signal buffering are all easily designed with the TLC27L1. The devices also exhibit low-voltage single-supply operation, making them ideally suited for remote and inaccessible battery-powered applications. The common-mode input-voltage range includes the negative rail.

The device inputs and output are designed to withstand -100-mA surge currents without sustaining latch-up.

The TLC27L1 incorporates internal electrostatic-discharge (ESD) protection circuits that prevent functional failures at voltages up to 2000 V as tested under MIL-STD-883C, Method 3015.2; however, care should be exercised in handling these devices as exposure to ESD may result in the degradation of the device parametric performance.

The C-suffix devices are characterized for operation from 0°C to 70°C. The I-suffix devices are characterized for operation from -40°C to 85°C. The M-suffix devices are characterized for operation over the full military temperature range of -55°C to 125°C.

The TLC27L1 operational amplifier combines a wide range of input offset-voltage grades with low offset-voltage drift and high input impedance. In addition, the TLC27L1 is a low-bias version of the TLC271 programmable amplifier. These devices use the Texas Instruments silicon-gate LinCMOS™ technology, which provides offset-voltage stability far exceeding the stability available with conventional metal-gate processes.

Three offset-voltage grades are available (C-suffix and I-suffix types), ranging from the low-cost TLC27L1 (10 mV) to the TLC27L1B (2 mV) low-offset version. The extremely high input impedance and low bias currents, in conjunction with good common-mode rejection and supply voltage rejection, make these devices a good choice for new state-of-the-art designs as well as for upgrading existing designs.

In general, many features associated with bipolar technology are available in LinCMOS™ operational amplifiers, without the power penalties of bipolar technology. General applications such as transducer interfacing, analog calculations, amplifier blocks, active filters, and signal buffering are all easily designed with the TLC27L1. The devices also exhibit low-voltage single-supply operation, making them ideally suited for remote and inaccessible battery-powered applications. The common-mode input-voltage range includes the negative rail.

The device inputs and output are designed to withstand -100-mA surge currents without sustaining latch-up.

The TLC27L1 incorporates internal electrostatic-discharge (ESD) protection circuits that prevent functional failures at voltages up to 2000 V as tested under MIL-STD-883C, Method 3015.2; however, care should be exercised in handling these devices as exposure to ESD may result in the degradation of the device parametric performance.

The C-suffix devices are characterized for operation from 0°C to 70°C. The I-suffix devices are characterized for operation from -40°C to 85°C. The M-suffix devices are characterized for operation over the full military temperature range of -55°C to 125°C.

Download

Technical documentation

star =Top documentation for this product selected by TI
No results found. Please clear your search and try again.
View all 1
Type Title Date
* Data sheet LinCMOS Low-Power Operational Amplifiers datasheet (Rev. B) 01 Jun 2005

Ordering & quality

Information included:
  • RoHS
  • REACH
  • Device marking
  • Lead finish/Ball material
  • MSL rating/Peak reflow
  • MTBF/FIT estimates
  • Material content
  • Qualification summary
  • Ongoing reliability monitoring
Information included:
  • Fab location
  • Assembly location