RM48L952

ACTIVE

16/32-Bit RISC Flash Microcontroller

Product details

Frequency (MHz) 220 Flash memory (kByte) 3072 RAM (kByte) 256 ADC type 2 x 12-bit (24ch) Number of GPIOs 144 UART 2 Features Hercules high-performance microcontroller TI functional safety category Functional Safety-Compliant Operating temperature range (°C) -40 to 105 Ethernet Yes PWM (Ch) 40, 44 SPI 1, 2 USB 1 host + 1 device, 2 host CAN (#) 3 Communication interface CAN, Ethernet, SPI, UART, USB
Frequency (MHz) 220 Flash memory (kByte) 3072 RAM (kByte) 256 ADC type 2 x 12-bit (24ch) Number of GPIOs 144 UART 2 Features Hercules high-performance microcontroller TI functional safety category Functional Safety-Compliant Operating temperature range (°C) -40 to 105 Ethernet Yes PWM (Ch) 40, 44 SPI 1, 2 USB 1 host + 1 device, 2 host CAN (#) 3 Communication interface CAN, Ethernet, SPI, UART, USB
LQFP (PGE) 144 484 mm² 22 x 22 NFBGA (ZWT) 337 256 mm² 16 x 16
  • High-Performance Microcontroller for Safety-Critical Applications
    • Dual CPUs Running in Lockstep
    • ECC on Flash and RAM Interfaces
    • Built-In Self-Test (BIST) for CPU and On-chip RAMs
    • Error Signaling Module With Error Pin
    • Voltage and Clock Monitoring
  • ARM Cortex-R4F 32-Bit RISC CPU
    • Efficient 1.66 DMIPS/MHz With 8-Stage Pipeline
    • FPU With Single- and Double-Precision
    • 12-Region Memory Protection Unit (MPU)
    • Open Architecture With Third-Party Support
  • Operating Conditions
    • System Clock up to 220 MHz
    • Core Supply Voltage (VCC): 1.2 V Nominal
    • I/O Supply Voltage (VCCIO): 3.3 V Nominal
    • ADC Supply Voltage (VCCAD): 3.0 to 5.25 V
  • Integrated Memory
    • 3MB of Program Flash With ECC
    • 256KB of RAM With ECC
    • 64KB of Flash With ECC for Emulated EEPROM
  • 16-Bit External Memory Interface
  • Common Platform Architecture
    • Consistent Memory Map Across Family
    • Real-Time Interrupt (RTI) Timer OS Timer
    • 96-Channel Vectored Interrupt Module (VIM)
    • 2-Channel Cyclic Redundancy Checker (CRC)
  • Direct Memory Access (DMA) Controller
    • 16 Channels and 32 Peripheral Requests
    • Parity Protection for Control Packet RAM
    • DMA Accesses Protected by Dedicated MPU
  • Frequency-Modulated Phase-Locked Loop (FMPLL) With Built-In Slip Detector
  • Separate Nonmodulating PLL
  • Trace and Calibration Capabilities
    • Embedded Trace Macrocell (ETM-R4)
    • Data Modification Module (DMM)
    • RAM Trace Port (RTP)
    • Parameter Overlay Module (POM)
  • Multiple Communication Interfaces
    • 10/100 Mbps Ethernet MAC (EMAC)
      • IEEE 802.3 Compliant (3.3-V I/O Only)
      • Supports MII, RMII, and MDIO
    • USB
      • 2-Port USB Host Controller
      • One Full-Speed USB Device Port
    • Three CAN Controllers (DCANs)
      • 64 Mailboxes, Each With Parity Protection
      • Compliant to CAN Protocol Version 2.0B
    • Standard Serial Communication Interface (SCI)
    • Local Interconnect Network (LIN) Interface Controller
      • Compliant to LIN Protocol Version 2.1
      • Can be Configured as a Second SCI
    • Inter-Integrated Circuit (I2C)
    • Three Multibuffered Serial Peripheral Interfaces (MibSPIs)
      • 128 Words With Parity Protection Each
    • Two Standard Serial Peripheral Interfaces (SPIs)
  • Two Next Generation High-End Timer (N2HET) Modules
    • N2HET1: 32 Programmable Channels
    • N2HET2: 18 Programmable Channels
    • 160-Word Instruction RAM Each With Parity Protection
    • Each N2HET Includes Hardware Angle Generator
    • Dedicated High-End Transfer Unit (HTU) With MPU for Each N2HET
  • Two 12-Bit Multibuffered ADC Modules
    • ADC1: 24 Channels
    • ADC2: 16 Channels Shared With ADC1
    • 64 Result Buffers With Parity Protection Each
  • General-Purpose Input/Output (GPIO) Pins Capable of Generating Interrupts
    • 16 Pins on the ZWT Package
    • 10 Pins on the PGE Package
  • IEEE 1149.1 JTAG, Boundary Scan and ARM CoreSight Components
  • JTAG Security Module
  • Packages
    • 144-Pin Quad Flatpack (PGE) [Green]
    • 337-Ball Grid Array (ZWT) [Green]

All trademarks are the property of their respective owners.

  • High-Performance Microcontroller for Safety-Critical Applications
    • Dual CPUs Running in Lockstep
    • ECC on Flash and RAM Interfaces
    • Built-In Self-Test (BIST) for CPU and On-chip RAMs
    • Error Signaling Module With Error Pin
    • Voltage and Clock Monitoring
  • ARM Cortex-R4F 32-Bit RISC CPU
    • Efficient 1.66 DMIPS/MHz With 8-Stage Pipeline
    • FPU With Single- and Double-Precision
    • 12-Region Memory Protection Unit (MPU)
    • Open Architecture With Third-Party Support
  • Operating Conditions
    • System Clock up to 220 MHz
    • Core Supply Voltage (VCC): 1.2 V Nominal
    • I/O Supply Voltage (VCCIO): 3.3 V Nominal
    • ADC Supply Voltage (VCCAD): 3.0 to 5.25 V
  • Integrated Memory
    • 3MB of Program Flash With ECC
    • 256KB of RAM With ECC
    • 64KB of Flash With ECC for Emulated EEPROM
  • 16-Bit External Memory Interface
  • Common Platform Architecture
    • Consistent Memory Map Across Family
    • Real-Time Interrupt (RTI) Timer OS Timer
    • 96-Channel Vectored Interrupt Module (VIM)
    • 2-Channel Cyclic Redundancy Checker (CRC)
  • Direct Memory Access (DMA) Controller
    • 16 Channels and 32 Peripheral Requests
    • Parity Protection for Control Packet RAM
    • DMA Accesses Protected by Dedicated MPU
  • Frequency-Modulated Phase-Locked Loop (FMPLL) With Built-In Slip Detector
  • Separate Nonmodulating PLL
  • Trace and Calibration Capabilities
    • Embedded Trace Macrocell (ETM-R4)
    • Data Modification Module (DMM)
    • RAM Trace Port (RTP)
    • Parameter Overlay Module (POM)
  • Multiple Communication Interfaces
    • 10/100 Mbps Ethernet MAC (EMAC)
      • IEEE 802.3 Compliant (3.3-V I/O Only)
      • Supports MII, RMII, and MDIO
    • USB
      • 2-Port USB Host Controller
      • One Full-Speed USB Device Port
    • Three CAN Controllers (DCANs)
      • 64 Mailboxes, Each With Parity Protection
      • Compliant to CAN Protocol Version 2.0B
    • Standard Serial Communication Interface (SCI)
    • Local Interconnect Network (LIN) Interface Controller
      • Compliant to LIN Protocol Version 2.1
      • Can be Configured as a Second SCI
    • Inter-Integrated Circuit (I2C)
    • Three Multibuffered Serial Peripheral Interfaces (MibSPIs)
      • 128 Words With Parity Protection Each
    • Two Standard Serial Peripheral Interfaces (SPIs)
  • Two Next Generation High-End Timer (N2HET) Modules
    • N2HET1: 32 Programmable Channels
    • N2HET2: 18 Programmable Channels
    • 160-Word Instruction RAM Each With Parity Protection
    • Each N2HET Includes Hardware Angle Generator
    • Dedicated High-End Transfer Unit (HTU) With MPU for Each N2HET
  • Two 12-Bit Multibuffered ADC Modules
    • ADC1: 24 Channels
    • ADC2: 16 Channels Shared With ADC1
    • 64 Result Buffers With Parity Protection Each
  • General-Purpose Input/Output (GPIO) Pins Capable of Generating Interrupts
    • 16 Pins on the ZWT Package
    • 10 Pins on the PGE Package
  • IEEE 1149.1 JTAG, Boundary Scan and ARM CoreSight Components
  • JTAG Security Module
  • Packages
    • 144-Pin Quad Flatpack (PGE) [Green]
    • 337-Ball Grid Array (ZWT) [Green]

All trademarks are the property of their respective owners.

The RM48L952 device is a high-performance microcontroller family for safety systems. The safety architecture includes dual CPUs in lockstep, CPU and memory BIST logic, ECC on both the flash and the data SRAM, parity on peripheral memories, and loopback capability on peripheral I/Os.

The RM48L952 device integrates the ARM Cortex-R4F Floating-Point CPU. The CPU offers an efficient 1.66 DMIPS/MHz, and has configurations that can run up to 220 MHz, providing up to 365 DMIPS. The device supports the little-endian [LE] format.

The RM48L952 device has 3MB of integrated flash and 256KB of data RAM. Both the flash and RAM have single-bit error correction and double-bit error detection. The flash memory on this device is a nonvolatile, electrically erasable, and programmable memory implemented with a 64-bit-wide data bus interface. The flash operates on a 3.3-V supply input (same level as I/O supply) for all read, program, and erase operations. When in pipeline mode, the flash operates with a system clock frequency of up to 220 MHz. The SRAM supports single-cycle read and write accesses in byte, halfword, word, and double-word modes.

The RM48L952 device features peripherals for real-time control-based applications, including two Next Generation High-End Timer (N2HET) timing coprocessors and two 12-bit Analog-to-Digital Converters (ADCs) supporting up to 24 inputs.

The N2HET is an advanced intelligent timer that provides sophisticated timing functions for real-time applications. The timer is software-controlled, using a reduced instruction set, with a specialized timer micromachine and an attached I/O port. The N2HET can be used for pulse-width-modulated outputs, capture or compare inputs, or GPIO. The N2HET is especially well suited for applications requiring multiple sensor information and drive actuators with complex and accurate time pulses. A High-End Timer Transfer Unit (HTU) can perform DMA-type transactions to transfer N2HET data to or from main memory. A Memory Protection Unit (MPU) is built into the HTU.

The device has two 12-bit-resolution MibADCs with 24 channels and 64 words of parity-protected buffer RAM each. The MibADC channels can be converted individually or can be grouped by software for sequential conversion sequences. Sixteen channels are shared between the two MibADCs. There are three separate groupings. Each sequence can be converted once when triggered or configured for continuous conversion mode. The MibADC has a 10-bit mode for use when compatibility with older devices or faster conversion time is desired.

The device has multiple communication interfaces: three MibSPIs, two SPIs, one LIN, one SCI, three DCANs, one I2C module, one Ethernet, and one USB module. The SPIs provide a convenient method of serial high-speed communication between similar shift-register type devices. The LIN supports the Local Interconnect standard 2.0 and can be used as a UART in full-duplex mode using the standard Non-Return-to-Zero (NRZ) format.

The DCAN supports the CAN 2.0 (A and B) protocol standard and uses a serial, multimaster communication protocol that efficiently supports distributed real-time control with robust communication rates of up to 1 Mbps. The DCAN is ideal for systems operating in noisy and harsh environments (for example, automotive vehicle networking and industrial fieldbus) that require reliable serial communication or multiplexed wiring.

The Ethernet module supports MII, RMII, and MDIO interfaces.

The USB module includes a 2-port USB host controller. It is revision 2.0-compatible, based on the OHCI specification for USB, release 1.0. The USB module also includes a USB device controller compatible with the USB specification revision 2.0 and USB specification revision 1.1.

The I2C module is a multimaster communication module providing an interface between the microcontroller and an I2C-compatible device through the I2C serial bus. The I2C supports speeds of 100 and 400 Kbps.

The Frequency-Modulated Phase-Locked Loop (FMPLL) clock module is used to multiply the external frequency reference to a higher frequency for internal use. There are two FMPLL modules on this device. These modules, when enabled, provide two of the seven possible clock source inputs to the Global Clock Module (GCM). The GCM manages the mapping between the available clock sources and the device clock domains.

The device also has an External Clock Prescaler (ECP) module that when enabled, outputs a continuous external clock on the ECLK pin (or ball). The ECLK frequency is a user-programmable ratio of the peripheral interface clock (VCLK) frequency. This low-frequency output can be monitored externally as an indicator of the device operating frequency.

The DMA controller has 16 channels, 32 peripheral requests, and parity protection on its memory. An MPU is built into the DMA to limit the DMA to prescribed areas of memory and to protect the rest of the memory system from any malfunction of the DMA.

The Error Signaling Module (ESM) monitors all device errors and determines whether an interrupt is generated or the external ERROR pin is toggled when a fault is detected. The ERROR pin can be monitored externally as an indicator of a fault condition in the microcontroller.

The External Memory Interface (EMIF) provides off-chip expansion capability with the ability to interface to synchronous DRAM (SDRAM) devices, asynchronous memories, peripherals, or FPGA devices.

Several interfaces are implemented to enhance the debugging capabilities of application code. In addition to the built-in ARM Cortex-R4F CoreSight debug features, an External Trace Macrocell (ETM) provides instruction and data trace of program execution. For instrumentation purposes, a RAM Trace Port (RTP) module is implemented to support high-speed tracing of RAM and peripheral accesses by the CPU or any other master. A Data Modification Module (DMM) gives the ability to write external data into the device memory. Both the RTP and DMM have no or only minimum impact on the program execution time of the application code. A Parameter Overlay Module (POM) can reroute flash accesses to internal memory or to the EMIF. This rerouting allows the dynamic calibration against production code of parameters and tables without rebuilding the code to explicitly access RAM or halting the processor to reprogram the data flash.

With integrated safety features and a wide choice of communication and control peripherals, the RM48L952 device is an ideal solution for high-performance real-time control applications with safety-critical

The RM48L952 device is a high-performance microcontroller family for safety systems. The safety architecture includes dual CPUs in lockstep, CPU and memory BIST logic, ECC on both the flash and the data SRAM, parity on peripheral memories, and loopback capability on peripheral I/Os.

The RM48L952 device integrates the ARM Cortex-R4F Floating-Point CPU. The CPU offers an efficient 1.66 DMIPS/MHz, and has configurations that can run up to 220 MHz, providing up to 365 DMIPS. The device supports the little-endian [LE] format.

The RM48L952 device has 3MB of integrated flash and 256KB of data RAM. Both the flash and RAM have single-bit error correction and double-bit error detection. The flash memory on this device is a nonvolatile, electrically erasable, and programmable memory implemented with a 64-bit-wide data bus interface. The flash operates on a 3.3-V supply input (same level as I/O supply) for all read, program, and erase operations. When in pipeline mode, the flash operates with a system clock frequency of up to 220 MHz. The SRAM supports single-cycle read and write accesses in byte, halfword, word, and double-word modes.

The RM48L952 device features peripherals for real-time control-based applications, including two Next Generation High-End Timer (N2HET) timing coprocessors and two 12-bit Analog-to-Digital Converters (ADCs) supporting up to 24 inputs.

The N2HET is an advanced intelligent timer that provides sophisticated timing functions for real-time applications. The timer is software-controlled, using a reduced instruction set, with a specialized timer micromachine and an attached I/O port. The N2HET can be used for pulse-width-modulated outputs, capture or compare inputs, or GPIO. The N2HET is especially well suited for applications requiring multiple sensor information and drive actuators with complex and accurate time pulses. A High-End Timer Transfer Unit (HTU) can perform DMA-type transactions to transfer N2HET data to or from main memory. A Memory Protection Unit (MPU) is built into the HTU.

The device has two 12-bit-resolution MibADCs with 24 channels and 64 words of parity-protected buffer RAM each. The MibADC channels can be converted individually or can be grouped by software for sequential conversion sequences. Sixteen channels are shared between the two MibADCs. There are three separate groupings. Each sequence can be converted once when triggered or configured for continuous conversion mode. The MibADC has a 10-bit mode for use when compatibility with older devices or faster conversion time is desired.

The device has multiple communication interfaces: three MibSPIs, two SPIs, one LIN, one SCI, three DCANs, one I2C module, one Ethernet, and one USB module. The SPIs provide a convenient method of serial high-speed communication between similar shift-register type devices. The LIN supports the Local Interconnect standard 2.0 and can be used as a UART in full-duplex mode using the standard Non-Return-to-Zero (NRZ) format.

The DCAN supports the CAN 2.0 (A and B) protocol standard and uses a serial, multimaster communication protocol that efficiently supports distributed real-time control with robust communication rates of up to 1 Mbps. The DCAN is ideal for systems operating in noisy and harsh environments (for example, automotive vehicle networking and industrial fieldbus) that require reliable serial communication or multiplexed wiring.

The Ethernet module supports MII, RMII, and MDIO interfaces.

The USB module includes a 2-port USB host controller. It is revision 2.0-compatible, based on the OHCI specification for USB, release 1.0. The USB module also includes a USB device controller compatible with the USB specification revision 2.0 and USB specification revision 1.1.

The I2C module is a multimaster communication module providing an interface between the microcontroller and an I2C-compatible device through the I2C serial bus. The I2C supports speeds of 100 and 400 Kbps.

The Frequency-Modulated Phase-Locked Loop (FMPLL) clock module is used to multiply the external frequency reference to a higher frequency for internal use. There are two FMPLL modules on this device. These modules, when enabled, provide two of the seven possible clock source inputs to the Global Clock Module (GCM). The GCM manages the mapping between the available clock sources and the device clock domains.

The device also has an External Clock Prescaler (ECP) module that when enabled, outputs a continuous external clock on the ECLK pin (or ball). The ECLK frequency is a user-programmable ratio of the peripheral interface clock (VCLK) frequency. This low-frequency output can be monitored externally as an indicator of the device operating frequency.

The DMA controller has 16 channels, 32 peripheral requests, and parity protection on its memory. An MPU is built into the DMA to limit the DMA to prescribed areas of memory and to protect the rest of the memory system from any malfunction of the DMA.

The Error Signaling Module (ESM) monitors all device errors and determines whether an interrupt is generated or the external ERROR pin is toggled when a fault is detected. The ERROR pin can be monitored externally as an indicator of a fault condition in the microcontroller.

The External Memory Interface (EMIF) provides off-chip expansion capability with the ability to interface to synchronous DRAM (SDRAM) devices, asynchronous memories, peripherals, or FPGA devices.

Several interfaces are implemented to enhance the debugging capabilities of application code. In addition to the built-in ARM Cortex-R4F CoreSight debug features, an External Trace Macrocell (ETM) provides instruction and data trace of program execution. For instrumentation purposes, a RAM Trace Port (RTP) module is implemented to support high-speed tracing of RAM and peripheral accesses by the CPU or any other master. A Data Modification Module (DMM) gives the ability to write external data into the device memory. Both the RTP and DMM have no or only minimum impact on the program execution time of the application code. A Parameter Overlay Module (POM) can reroute flash accesses to internal memory or to the EMIF. This rerouting allows the dynamic calibration against production code of parameters and tables without rebuilding the code to explicitly access RAM or halting the processor to reprogram the data flash.

With integrated safety features and a wide choice of communication and control peripherals, the RM48L952 device is an ideal solution for high-performance real-time control applications with safety-critical

Download View video with transcript Video

More information

Hercules RM48L952 is certified by TÜV SÜD to be capable of achieving IEC 61508 SIL 3 helping to make it easier to develop functional safety applications. Download certificate now.

Technical documentation

star =Top documentation for this product selected by TI
No results found. Please clear your search and try again.
View all 83
Type Title Date
* Data sheet RM48L952 16- and 32-Bit RISC Flash Microcontroller datasheet (Rev. D) PDF | HTML 30 Jun 2015
* Errata RM48x Microcontroller Silicon Errata (Silicon Revision C) (Rev. G) 31 May 2016
* Errata RM48x Microcontroller Silicon Errata (Silicon Revision D) (Rev. B) 31 May 2016
* User guide RM48x 16/32-Bit RISC Flash Microcontroller Technical Reference Manual (Rev. C) 01 Mar 2018
Functional safety information Certification for Functional Safety Hardware Process (Rev. B) 09 Jun 2022
More literature Hercules™ Diagnostic Library Test Automation Unit User Guide (Rev. B) PDF | HTML 09 Jan 2020
More literature HALCoGen-CSP 04.07.01 (Rev. C) PDF | HTML 08 Jan 2020
Functional safety information HALCoGen-CSP Installation Guide (Rev. B) PDF | HTML 08 Jan 2020
Functional safety information HALCoGen-CSP User's Guide (Rev. C) PDF | HTML 08 Jan 2020
Functional safety information Hercules Diagnostic Library -TAU Installation Guide (Rev. B) PDF | HTML 08 Jan 2020
User guide Hercules Diagnostic Library CSP Without LDRA 29 Oct 2019
More literature Diagnostic Library CSP Release Notes 17 Oct 2019
Functional safety information SafeTI™ Hercules™ Diagnostic Library Release Notes (Rev. A) 24 Sep 2019
Application note HALCoGen Ethernet Driver With lwIP Integration Demo and Active Webserver Demo PDF | HTML 13 Sep 2019
Application note Hercules PLL Advisory SSWF021#45 Workaround (Rev. B) PDF | HTML 09 Sep 2019
Application note CAN Bus Bootloader for Hercules Microcontrollers PDF | HTML 21 Aug 2019
Application note HALCoGen CSP Without LDRA Release_Notes 19 Aug 2019
User guide HALCoGen-CSP Without LDRA Installation Guide PDF | HTML 19 Aug 2019
User guide HALCoGen-CSP Without LDRA User's Guide PDF | HTML 19 Aug 2019
User guide Hercules Diagnostic Library - Without LDRA Installation Guide PDF | HTML 19 Aug 2019
User guide Hercules™ Diag Lib Test Automation Unit Without LDRA User's Guide PDF | HTML 19 Aug 2019
Functional safety information Certification for SafeTI Functional Safety Hardware Process (Rev. A) 07 Jun 2019
Application note Interfacing the Embedded 12-Bit ADC in a TMS570LS31x/21x and RM4x Series MCUs (Rev. A) 20 Apr 2018
Application note FreeRTOS on Hercules Devices_new 19 Apr 2018
Application note Sharing FEE Blocks Between the Bootloader and the Application 07 Nov 2017
Application note Sharing Exception Vectors on Hercules™ Based Microcontrollers 27 Mar 2017
Application note Hercules AJSM Unlock (Rev. A) PDF | HTML 19 Oct 2016
Application note How to Create a HALCoGen Based Project For CCS (Rev. B) 09 Aug 2016
Application note Using the CRC Module on Hercules™-Based Microcontrollers 04 Aug 2016
Functional safety information Functional Safety Audit: SafeTI Functional Safety Hardware Development (Rev. A) 25 Apr 2016
Application note High Speed Serial Bus Using the MibSPIP Module on Hercules-Based MCUs 22 Apr 2016
Certificate TUEV SUED Certification for RM48x (Rev. B) 18 Feb 2016
Functional safety information Safety Manual for RM48x Hercules ARM-Based Safety Critical MCUs (Rev. D) 18 Feb 2016
Functional safety information Enabling Functional Safety Using SafeTI Diagnostic Library 18 Dec 2015
White paper Hercules™ MCU: Features Applicable to Use in High-Speed Rail 02 Nov 2015
Application note Triggering ADC Using Internal Timer Events on Hercules MCUs 19 Oct 2015
White paper Extending TI’s Hercules MCUs with the integrated flexible HET 29 Sep 2015
Application note Continuous Monitor of the PLL Frequency With the DCC 24 Jul 2015
Application note PWM Generation and Input Capture Using HALCoGen N2HET Module 30 Jun 2015
Functional safety information Foundational Software for Functional Safety 12 May 2015
Application note Sine Wave Generation Using PWM With Hercules N2HET and HTU 12 May 2015
Application note Triangle/Trapezoid Wave Generation Using PWM With Hercules N2HET 01 May 2015
Application note Nested Interrupts on Hercules ARM Cortex-R4/5-Based Microncontrollers 23 Apr 2015
White paper Latch-Up White Paper PDF | HTML 22 Apr 2015
Application note Interrupt and Exception Handling on Hercules ARM Cortex-R4/5-Based MCUs 20 Apr 2015
Application note Monitoring PWM Using N2HET 02 Apr 2015
Application note Hercules SCI With DMA 22 Mar 2015
Certificate TÜV NORD Certificate for Functional Safety Software Development Process 03 Feb 2015
Functional safety information Calculating Equivalent Power-on-Hours for Hercules Safety MCUs 26 Jan 2015
Application note Limiting Clamp Currents on TMS470/TMS570 Digital and Analog Inputs (Rev. A) 08 Dec 2014
Functional safety information Migrating from RM48x or RM46x to RM42x Safety MCUs (Rev. A) 22 Sep 2014
Functional safety information TUV SUD ISO-13849 Safety Architecture Concept Study 02 Jul 2014
More literature HaLCoGen Release Notes 25 Jun 2014
Functional safety information Migrating From RM48x to RM46x Safety MCUs (Rev. A) 19 Feb 2014
Application note Interfacing TPS65381 With Hercules Microcontrollers (Rev. A) 14 Feb 2014
User guide Trace Analyzer User's Guide (Rev. B) 18 Nov 2013
Functional safety information IEC 60730 and UL 1998 Safety Standard Compliance Made Easier with TI Hercules 03 Oct 2013
Application note CAN Bus Bootloader for RM48x MCU 16 Sep 2013
Application note SPI Bootloader for Hercules RM48 MCU 16 Sep 2013
Application note UART Bootloader for Hercules RM48 MCU 16 Sep 2013
White paper Model-Based Tool Qualification of the TI C/C++ ARM® Compiler 06 Jun 2013
Application note Initialization of Hercules ARM Cortex-R4F Microcontrollers (Rev. D) 29 May 2013
Application note Reduction of Power Consumption for RM48L950 (Rev. A) 30 Oct 2012
Functional safety information Accelerating safety-certified motor control designs (Rev. A) 04 Oct 2012
Application note Hercules Family Frequency Slewing to Reduce Voltage and Current Transients 05 Jul 2012
Application note Basic PBIST Configuration and Influence on Current Consumption (Rev. C) 12 Apr 2012
Application note Verification of Data Integrity Using CRC 17 Feb 2012
Functional safety information Important ARM Ltd Application Notes for TI Hercules ARM Safety MCUs 17 Nov 2011
Functional safety information Execution Time Measurement for Hercules ARM Safety MCUs (Rev. A) 04 Nov 2011
Application note Use of All 1'’s and All 0's Valid in Flash EEPROM Emulation 27 Sep 2011
Application note 3.3 V I/O Considerations for Hercules Safety MCUs (Rev. A) 06 Sep 2011
Functional safety information ADC Source Impedance for Hercules ARM Safety MCUs (Rev. B) 06 Sep 2011
Functional safety information Configuring a CAN Node on Hercules ARM Safety MCUs 06 Sep 2011
Functional safety information Configuring the Hercules ARM Safety MCU SCI/LIN Module for UART Communication (Rev. A) 06 Sep 2011
Functional safety information Leveraging the High-End Timer Transfer Unit on Hercules ARM Safety MCUs (Rev. A) 06 Sep 2011
Functional safety information Hercules™ Microcontrollers: Real-time MCUs for safety-critical products 02 Sep 2011
Application note ECC Handling in TMSx70-Based Microcontrollers 23 Feb 2011
User guide TI ICEPick Module Type C Reference Guide Public Version 17 Feb 2011
Application note NHET Getting Started (Rev. B) 30 Aug 2010
Functional safety information Generating Operating System Tick Using RTI on a Hercules ARM Safety MCU 13 Jul 2010
Functional safety information Usage of MPU Subregions on TI Hercules ARM Safety MCUs 10 Mar 2010
User guide TI Assembly Language Tools Enhanced High-End Timer (NHET) Assembler User's Guide 04 Mar 2010
White paper Discriminating between Soft Errors and Hard Errors in RAM White Paper 04 Jun 2008

Design & development

Please view the Design & development section on a desktop.

Ordering & quality

Information included:
  • RoHS
  • REACH
  • Device marking
  • Lead finish/Ball material
  • MSL rating/Peak reflow
  • MTBF/FIT estimates
  • Material content
  • Qualification summary
  • Ongoing reliability monitoring
Information included:
  • Fab location
  • Assembly location

Recommended products may have parameters, evaluation modules or reference designs related to this TI product.

Support & training

TI E2E™ forums with technical support from TI engineers

Content is provided "as is" by TI and community contributors and does not constitute TI specifications. See terms of use.

If you have questions about quality, packaging or ordering TI products, see TI support. ​​​​​​​​​​​​​​

Videos