Product details

Arm CPU 2 Arm Cortex-A15 Arm (max) (MHz) 1000 Coprocessors 2 Dual Arm Cortex-M4 CPU 32-bit Graphics acceleration 1 2D, 2 3D Display type 1 HDMI, 3 LCD Protocols Ethernet Ethernet MAC 1-Port 10/100/1000, 2-Port 1Gb switch PCIe 2 PCIe Gen 2 Hardware accelerators 1 Image Video Accelerator, 2 Viterbi Decoder, Audio Tracking Features Multimedia Operating system Android, Linux, RTOS Security Cryptography, Debug security, Device identity, Isolation firewalls, Secure boot, Secure storage & programming, Software IP protection Rating Automotive Operating temperature range (°C) -40 to 125
Arm CPU 2 Arm Cortex-A15 Arm (max) (MHz) 1000 Coprocessors 2 Dual Arm Cortex-M4 CPU 32-bit Graphics acceleration 1 2D, 2 3D Display type 1 HDMI, 3 LCD Protocols Ethernet Ethernet MAC 1-Port 10/100/1000, 2-Port 1Gb switch PCIe 2 PCIe Gen 2 Hardware accelerators 1 Image Video Accelerator, 2 Viterbi Decoder, Audio Tracking Features Multimedia Operating system Android, Linux, RTOS Security Cryptography, Debug security, Device identity, Isolation firewalls, Secure boot, Secure storage & programming, Software IP protection Rating Automotive Operating temperature range (°C) -40 to 125
FCBGA (ABC) 760 529 mm² 23 x 23
  • Architecture designed for infotainment applications
  • Video, image, and graphics processing support
    • Full-HD video (1920 × 1080p, 60 fps)
    • Multiple video input and video output
    • 2D and 3D graphics
  • Dual Arm® Cortex®-A15 microprocessor subsystem
  • Up to two C66x floating-point VLIW DSP
    • Fully object-code compatible with C67x and C64x+
    • Up to thirty-two 16 x 16-Bit fixed-point multiplies per cycle
  • Up to 2.5MB of on-chip L3 RAM
  • Level 3 (L3) and level 4 (L4) interconnects
  • Two DDR2/DDR3/DDR3L memory interface (EMIF) modules
    • Supports up to DDR2-800 and DDR3-1066
    • Up to 2GB supported per EMIF
  • Dual Arm® Cortex®-M4 Image Processing Units (IPU)
  • Up to two Embedded Vision Engines (EVEs)
  • IVA subsystem
  • Display subsystem
    • Display controller with DMA engine and up to three pipelines
    • HDMI™ encoder: HDMI 1.4a and DVI 1.0 compliant
  • Video Processing Engine (VPE)
  • 2D-graphics accelerator (BB2D) subsystem
    • Vivante® GC320 core
  • Dual-core PowerVR® SGX544 3D GPU
  • Three Video Input Port (VIP) modules
    • Support for up to 10 multiplexed input ports
  • General-Purpose Memory Controller (GPMC)
  • Enhanced Direct Memory Access (EDMA) controller
  • 2-port gigabit ethernet (GMAC)
  • Sixteen 32-Bit general-purpose timers
  • 32-Bit MPU watchdog timer
  • Five Inter-Integrated Circuit (I2C™) ports
  • HDQ™/1-Wire® interface
  • SATA interface
  • MediaLB® (MLB) subsystem
  • Ten configurable UART/IrDA/CIR modules
  • Four Multichannel Serial Peripheral Interfaces (McSPI)
  • Quad SPI (QSPI)
  • Eight Multichannel Audio Serial Port (McASP) modules
  • SuperSpeed USB 3.0 dual-role device
  • Three high-speed USB 2.0 dual-role devices
  • Four Multimedia Card/Secure Digital/Secure Digital Input Output interfaces (MMC™/SD®/SDIO)
  • PCI-Express® 3.0 subsystems with two 5-Gbps lanes
    • One 2-lane gen2-compliant port
    • or Two 1-lane gen2-compliant ports
  • Dual Controller Area Network (DCAN) modules
    • CAN 2.0B protocol
  • Up to 247 General-Purpose I/O (GPIO) pins
  • Real-Time Clock SubSystem (RTCSS)
  • Device security features
    • Hardware crypto accelerators and DMA
    • Firewalls
    • JTAG® lock
    • Secure keys
    • Secure ROM and boot
  • Power, Reset, and Clock Management (PRCM)
  • On-chip debug with CTools technology
  • 28-nm CMOS technology
  • 23 mm × 23 mm, 0.8-mm pitch, 760-pin BGA (ABC)
  • Architecture designed for infotainment applications
  • Video, image, and graphics processing support
    • Full-HD video (1920 × 1080p, 60 fps)
    • Multiple video input and video output
    • 2D and 3D graphics
  • Dual Arm® Cortex®-A15 microprocessor subsystem
  • Up to two C66x floating-point VLIW DSP
    • Fully object-code compatible with C67x and C64x+
    • Up to thirty-two 16 x 16-Bit fixed-point multiplies per cycle
  • Up to 2.5MB of on-chip L3 RAM
  • Level 3 (L3) and level 4 (L4) interconnects
  • Two DDR2/DDR3/DDR3L memory interface (EMIF) modules
    • Supports up to DDR2-800 and DDR3-1066
    • Up to 2GB supported per EMIF
  • Dual Arm® Cortex®-M4 Image Processing Units (IPU)
  • Up to two Embedded Vision Engines (EVEs)
  • IVA subsystem
  • Display subsystem
    • Display controller with DMA engine and up to three pipelines
    • HDMI™ encoder: HDMI 1.4a and DVI 1.0 compliant
  • Video Processing Engine (VPE)
  • 2D-graphics accelerator (BB2D) subsystem
    • Vivante® GC320 core
  • Dual-core PowerVR® SGX544 3D GPU
  • Three Video Input Port (VIP) modules
    • Support for up to 10 multiplexed input ports
  • General-Purpose Memory Controller (GPMC)
  • Enhanced Direct Memory Access (EDMA) controller
  • 2-port gigabit ethernet (GMAC)
  • Sixteen 32-Bit general-purpose timers
  • 32-Bit MPU watchdog timer
  • Five Inter-Integrated Circuit (I2C™) ports
  • HDQ™/1-Wire® interface
  • SATA interface
  • MediaLB® (MLB) subsystem
  • Ten configurable UART/IrDA/CIR modules
  • Four Multichannel Serial Peripheral Interfaces (McSPI)
  • Quad SPI (QSPI)
  • Eight Multichannel Audio Serial Port (McASP) modules
  • SuperSpeed USB 3.0 dual-role device
  • Three high-speed USB 2.0 dual-role devices
  • Four Multimedia Card/Secure Digital/Secure Digital Input Output interfaces (MMC™/SD®/SDIO)
  • PCI-Express® 3.0 subsystems with two 5-Gbps lanes
    • One 2-lane gen2-compliant port
    • or Two 1-lane gen2-compliant ports
  • Dual Controller Area Network (DCAN) modules
    • CAN 2.0B protocol
  • Up to 247 General-Purpose I/O (GPIO) pins
  • Real-Time Clock SubSystem (RTCSS)
  • Device security features
    • Hardware crypto accelerators and DMA
    • Firewalls
    • JTAG® lock
    • Secure keys
    • Secure ROM and boot
  • Power, Reset, and Clock Management (PRCM)
  • On-chip debug with CTools technology
  • 28-nm CMOS technology
  • 23 mm × 23 mm, 0.8-mm pitch, 760-pin BGA (ABC)

DRA75x and DRA74x (Jacinto 6) infotainment applications processors are built to meet the intense processing needs of the modern infotainment-enabled automobile experiences.

The device enables Original-Equipment Manufacturers (OEMs) and Original-Design Manufacturers (ODMs) to quickly implement innovative connectivity technologies, speech recognition, audio streaming, and more. Jacinto 6 devices bring high processing performance through the maximum flexibility of a fully integrated mixed processor solution. The devices also combine programmable video processing with a highly integrated peripheral set.

Programmability is provided by dual-core Arm® Cortex®-A15 RISC CPUs with Arm® Neon™ extension, TI C66x VLIW floating-point DSP core, and Vision AccelerationPac (with one or more EVEs). The Arm allows developers to keep control functions separate from other algorithms programmed on the DSP and coprocessors, thus reducing the complexity of the system software.

Additionally, TI provides a complete set of development tools for the Arm, DSP, and EVE coprocessor, including C compilers and a debugging interface for visibility into source code.

The DRA75x and DRA74x Jacinto 6 processor family is qualified according to the AEC-Q100 standard.

DRA75x and DRA74x (Jacinto 6) infotainment applications processors are built to meet the intense processing needs of the modern infotainment-enabled automobile experiences.

The device enables Original-Equipment Manufacturers (OEMs) and Original-Design Manufacturers (ODMs) to quickly implement innovative connectivity technologies, speech recognition, audio streaming, and more. Jacinto 6 devices bring high processing performance through the maximum flexibility of a fully integrated mixed processor solution. The devices also combine programmable video processing with a highly integrated peripheral set.

Programmability is provided by dual-core Arm® Cortex®-A15 RISC CPUs with Arm® Neon™ extension, TI C66x VLIW floating-point DSP core, and Vision AccelerationPac (with one or more EVEs). The Arm allows developers to keep control functions separate from other algorithms programmed on the DSP and coprocessors, thus reducing the complexity of the system software.

Additionally, TI provides a complete set of development tools for the Arm, DSP, and EVE coprocessor, including C compilers and a debugging interface for visibility into source code.

The DRA75x and DRA74x Jacinto 6 processor family is qualified according to the AEC-Q100 standard.

Download View video with transcript Video

More Information

For more information on the DRA750  Request Now

Technical documentation

star =Top documentation for this product selected by TI
No results found. Please clear your search and try again.
View all 47
Type Title Date
* Data sheet DRA75x, DRA74x Infotainment Applications Processor Silicon Revision 2.0 datasheet (Rev. F) PDF | HTML 07 May 2019
* Errata DRA75x, DRA74x Silicon Errata Automotive Infotainment Silicon Revision 2.0, 1.1 (Rev. J) PDF | HTML 08 Jan 2021
White paper Understanding Functional Safety FIT Base Failure Rate Estimates per IEC 62380 and SN 29500 (Rev. A) PDF | HTML 30 Apr 2024
Application note Integrating virtual DRM between VISION SDK and PSDK on Jacinto6 SOC PDF | HTML 05 May 2021
Application note IVA-HD Sharing Between VISION-SDK and PSDKLA on Jacinto6 SoC PDF | HTML 24 Aug 2020
Application note AM57x, DRA7x, and TDA2x EMIF Tools (Rev. E) 06 Jan 2020
Application note Integrating New Cameras With Video Input Port on DRA7xx SoCs PDF | HTML 11 Jun 2019
Application note Achieving Early CAN Response on DRA7xx Devices 28 Nov 2018
Application note DRA74x_75x/DRA72x Performance (Rev. A) 31 Oct 2018
Application note Audio Post Processing Engine on Jacinto™ DRA7x Family of Devices 14 Sep 2018
Application note The Implementation of YUV422 Output for SRV 02 Aug 2018
Application note MMC DLL Tuning (Rev. B) 31 Jul 2018
Application note Integrating AUTOSAR on TI SoC: Fundamentals 18 Jun 2018
Application note ECC/EDC on TDAxx (Rev. B) 13 Jun 2018
Application note Tools and Techniques to Root Case Failures in Video Capture Subsystem 12 Jun 2018
Application note Sharing VPE Between VISIONSDK and PSDKLA 04 May 2018
Application note Android Boot Optimization on DRA7xx Devices (Rev. A) 13 Feb 2018
Application note Flashing Utility - mflash 09 Jan 2018
Application note Using Peripheral Boot and DFU for Rapid Development on Jacinto 6 Devices (Rev. A) 30 Nov 2017
Application note Jacinto6 Spread Spectrum Clocking Configuration (Rev. A) 27 Nov 2017
Application note Optimizing DRA7xx and TDA2xx Processors for use with Video Display SERDES (Rev. B) 07 Nov 2017
Application note A Guide to Debugging With CCS on the DRA75x, DRA74x, TDA2x and TDA3x Family of D (Rev. B) 03 Nov 2017
Application note Robust Rear-View Camera (RVC) App Report 13 Sep 2017
Application note Optimization of GPU-Based Surround View on TI’s TDA2x SoC 12 Sep 2017
Application note Using DSS Write-Back Pipeline for RGB-to-YUV Conversion on DRA7xx Devices 14 Aug 2017
Application note Software Guidelines to EMIF/DDR3 Configuration on DRA7xx Devices 12 Jul 2017
White paper Revolutionize the automotive cockpit 02 Jun 2017
Application note Linux Boot Time Optimizations on DRA7xx Devices 31 Mar 2017
Application note Interfacing DRA75x and DRA74x Audio to Analog Codecs (Rev. A) 17 Feb 2017
Application note Early Splash Screen on DRA7x Devices 31 Jan 2017
Application note Quality of Service (QoS) Knobs for DRA74x, DRA75x & TDA2x Family of Devices (Rev. A) 15 Dec 2016
Application note Gstreamer Migration Guidelines 26 Apr 2016
User guide Jacinto6 Android Video Decoder Software Design Specification User's Guide 21 Apr 2016
User guide Jacinto6 Android Video Encoder Software Design Specification User's Guide 21 Apr 2016
Application note Flashing Binaries to DRA7xx Factory Boards Using DFU 14 Apr 2016
Application note Tools and Techniques for Audio Debugging 13 Apr 2016
Application note Debugging Tools and Techniques With IPC3.x 30 Mar 2016
Technical article Infotainment for the Masses – Volkswagen MIB II Standard powered by TI PDF | HTML 17 Feb 2016
EVM User's guide DRA75x and DRA74x EVM CPU Board User's Guide 09 Feb 2016
User guide JAMR3 Tuner Application Board User’s Guide 09 Feb 2016
Application note Modifying Memory Usage for IPUMM Applications Loaded IPC 3.x for DRA75x, DRA74x (Rev. A) 15 Jan 2016
Technical article Difficult to see. Always in motion is the future PDF | HTML 04 Jan 2016
Technical article Securing the Scene PDF | HTML 16 Dec 2015
User guide DRA75x, DRA74x Technical Reference Manual (SR2.0 & SR1.1) (Rev. H) PDF | HTML 22 Jun 2015
White paper Informational ADAS as Software Upgrade to Today’s Infotainment Systems 14 Oct 2014
Product overview DRA75x “Jacinto 6 EP” and “Jacinto 6 Ex” Automotive Product Bulletin 25 Sep 2014
Application note Guide to fix Perf Issues Using QoS Knobs for DRA74x, DRA75x, TDA2x & TD3x Device 13 Aug 2014

Design & development

Please view the Design & development section on a desktop.

Ordering & quality

Information included:
  • RoHS
  • REACH
  • Device marking
  • Lead finish/Ball material
  • MSL rating/Peak reflow
  • MTBF/FIT estimates
  • Material content
  • Qualification summary
  • Ongoing reliability monitoring
Information included:
  • Fab location
  • Assembly location

Recommended products may have parameters, evaluation modules or reference designs related to this TI product.

Support & training

TI E2E™ forums with technical support from TI engineers

Content is provided "as is" by TI and community contributors and does not constitute TI specifications. See terms of use.

If you have questions about quality, packaging or ordering TI products, see TI support. ​​​​​​​​​​​​​​

Videos