SLVAF66 June   2021 DRV3255-Q1 , DRV8300 , DRV8301 , DRV8302 , DRV8303 , DRV8304 , DRV8305 , DRV8305-Q1 , DRV8306 , DRV8307 , DRV8308 , DRV8320 , DRV8320R , DRV8323 , DRV8323R , DRV8340-Q1 , DRV8343-Q1 , DRV8350 , DRV8350F , DRV8350R , DRV8353 , DRV8353F , DRV8353R

 

  1. Introduction to High-Power Motor Applications
    1. 1.1 Effects of a Poorly-Designed High-Power Motor Driver System
    2. 1.2 Example of the High-Power Design Process
  2. Examining a High-Power Motor Drive System at a High Level
    1. 2.1 Anatomy of the Motor Drive Power Stage and How to Troubleshoot
    2. 2.2 Troubleshooting a High-Power System
  3. High-Power Design Through MOSFETs and MOSFET Gate Current (IDRIVE)
    1. 3.1 MOSFET Gate Current
      1. 3.1.1 How Gate Current Causes Damage
      2. 3.1.2 Gate Resistors and Smart Gate Drive Technology
        1. 3.1.2.1 Gate Resistors
        2. 3.1.2.2 Smart Gate Drive and Internally-Controlled Sink and Source Gate Currents
        3. 3.1.2.3 Summary for Gate Resistors and Smart Gate Drive Technology
      3. 3.1.3 Example Gate Current Calculation for a Given FET
  4. High-Power Design Through External Components
    1. 4.1 Bulk and Decoupling Capacitors
      1. 4.1.1 Note on Capacitor Voltage Ratings
    2. 4.2 RC Snubber Circuits
    3. 4.3 High-Side Drain to Low-Side Source Capacitor
    4. 4.4 Gate-to-GND Diodes
  5. High-Power Design Through a Parallel MOSFET Power Stage
  6. High-Power Design Through Protection
    1. 6.1 VDS and VGS Monitoring
      1. 6.1.1 Turning Off the FETs During an Overcurrent, Shoot-Through, or FET Shorting Event
    2. 6.2 Passive Gate-to-Source Pulldown Resistors
    3. 6.3 Power Supply Reverse Polarity or Power Supply Cutoff Protection
  7. High-Power Design Through Motor Control Methods
    1. 7.1 Brake versus Coast
      1. 7.1.1 Algorithm-Based Solutions
      2. 7.1.2 External Circuit Solutions
      3. 7.1.3 Summary of Brake versus Coast
  8. High-Power Design Through Layout
    1. 8.1 What is a Kelvin Connection?
    2. 8.2 General Layout Advice
  9. Conclusion
  10. 10Acknowledgments

High-Power Design Through Motor Control Methods