SPRACP4A December   2019  – June 2024 AM67 , AM67A , AM68 , AM68A , AM69 , AM69A , DRA821U , DRA821U-Q1 , DRA829J , DRA829J-Q1 , DRA829V , DRA829V-Q1 , TDA4AEN-Q1 , TDA4AH-Q1 , TDA4AL-Q1 , TDA4AP-Q1 , TDA4VE-Q1 , TDA4VEN-Q1 , TDA4VH-Q1 , TDA4VL-Q1 , TDA4VM , TDA4VM-Q1 , TDA4VP-Q1

 

  1.   1
  2.   Abstract
  3.   Trademarks
  4. 1Introduction
    1. 1.1 Overview
    2. 1.2 Supporting Documentation
  5. 2High-Speed Interface Design Guidance
    1. 2.1  Trace Impedance
    2. 2.2  Trace Lengths
    3. 2.3  Differential Signal Length Matching
    4. 2.4  Signal Reference Planes
    5. 2.5  Differential Signal Spacing
    6. 2.6  Additional Differential Signal Rules
    7. 2.7  Symmetry in the Differential Pairs
    8. 2.8  Connectors and Receptacles
    9. 2.9  Via Discontinuity Mitigation
    10. 2.10 Back-Drill Via Stubs
    11. 2.11 Via Anti-Pad Diameter
    12. 2.12 Equalize Via Count
    13. 2.13 Surface-Mount Device Pad Discontinuity Mitigation
    14. 2.14 Signal Bending
    15. 2.15 ESD and EMI Considerations
    16. 2.16 ESD and EMI Layout Rules
  6. 3Interface-Specific Design Guidance
    1. 3.1 USB Board Design and Layout Guidelines
      1. 3.1.1 USB Interface Schematic
        1. 3.1.1.1 Support Components
      2. 3.1.2 Routing Specifications
    2. 3.2 DisplayPort Board Design and Layout Guidelines
      1. 3.2.1 DP Interface Schematic
        1. 3.2.1.1 Support Components
      2. 3.2.2 Routing Specifications
    3. 3.3 PCIe Board Design and Layout Guidelines
      1. 3.3.1 PCIe Interface Schematic
        1. 3.3.1.1 Polarity Inversion
        2. 3.3.1.2 Lane Swap
        3. 3.3.1.3 REFCLK Connections
        4. 3.3.1.4 Coupling Capacitors
      2. 3.3.2 Routing Specifications
    4. 3.4 MIPI® D-PHY (CSI2, DSI) Board Design and Layout Guidelines
      1. 3.4.1 CSI-2®, DSI® Interface Schematic
      2. 3.4.2 Routing Specifications
      3. 3.4.3 Frequency-Domain Specification Guidelines
    5. 3.5 UFS Board Design and Layout Guidelines
      1. 3.5.1 UFS Interface Schematic
      2. 3.5.2 Routing Specifications
    6. 3.6 Q/SGMII Board Design and Layout Guidelines
      1. 3.6.1 Q/SGMII Interface Schematic
        1. 3.6.1.1 Coupling Capacitors
      2. 3.6.2 Routing Specifications
  7. 4Board Design Simulations
    1. 4.1 Board Model Extraction
    2. 4.2 Board-Model Validation
    3. 4.3 S-Parameter Inspection
    4. 4.4 Time Domain Reflectometry (TDR) Analysis
    5. 4.5 Simulation Integrity Analysis
      1. 4.5.1 Simulator Settings and Model Usage
      2. 4.5.2 Simulation Parameters
      3. 4.5.3 Simulation Methodology
    6. 4.6 Reviewing Simulation Results
  8. 5References
  9. 6Revision History

Routing Specifications

These parameters are recommendations only, intended to get the design close to success prior to simulation. To make sure the PCB design meets all requirements, it is required that the design be simulated and those results compared with the simulation results defined in Section 4.

Table 3-3 USB3.1 (Super Speed) Routing Specifications
ParameterMINTYPMAXUnit
USB3.1 Gen1 Operating Speed
(Super Speed signals)
2.5 (1)GHz
USB3.1 Signal Trace Length5000 (2)Mils
USB3.1 Differential Pair Skew1ps
USB3.1 Differential Impedance85.59094.5Ω
Number of stubs allowed on USB3.1 traces0stubs
Number of vias on each USB3.1 trace2Vias
Via Stub Length (3)20Mils
USB3.1 Differential Pair to any other Trace Spacing (4)2×DS3×DS
For supported data rates, see the device-specific data manual.
Max value is based upon conservative signal integrity approach. This value can be extended only if detailed signal integrity analysis confirms the desired operation.
Via stub control can be required when operating at higher data rates.
DS = differential spacing of the traces. Exceptions can be necessary in the SoC package BGA area.
Table 3-4 USB2.0 Routing Specifications
ParameterMINTYPMAXUnit
USB2.0 Operating Speed240MHz
USB2.0 Signal Trace Length7000 (1)Mils
USB2.0 Differential Pair Skew5ps
USB2.0 Differential Impedance819099Ω
Number of stubs allowed on USB2.0 traces0stubs
Number of vias on each USB2.0 trace4Vias
USB2.0 Differential Pair to any other Trace Spacing (2)2×DS3×DS
Max value is based upon conservative signal integrity approach. This value can be extended only if detailed signal integrity analysis confirms the desired operation.
DS = differential spacing of the traces. Exceptions can be necessary in the SoC package BGA area.

Component pads create impedance discontinuities due to the increased widths of the pads. In an effort to minimize impedance discontinuities, voids are created in the reference plane beneath the component pads. Figure 3-3 presents an example layout, demonstrating the “carve GND” concept. Before and after effects of the reference plane voids can be seen in TDR plots and simulation results.

 USB 3.1 Example “carve GND” LayoutFigure 3-3 USB 3.1 Example “carve GND” Layout