SBAA541 December   2022 AMC1202 , AMC1302 , AMC1306M05 , AMC22C11 , AMC22C12 , AMC23C10 , AMC23C11 , AMC23C12 , AMC23C14 , AMC23C15 , AMC3302 , AMC3306M05

 

  1.   Abstract
  2.   Trademarks
  3. 1Introduction
    1. 1.1 DC Charging Station for Electric Vehicles
    2. 1.2 Current-Sensing Technology Selection and Equivalent Model
      1. 1.2.1 Sensing of the Current With Shunt-Based Solution
      2. 1.2.2 Equivalent Model of the Sensing Technology
  4. 2Current Sensing in AC/DC Converters
    1. 2.1 Basic Hardware and Control Description of AC/DC
      1. 2.1.1 AC Current Control Loops
      2. 2.1.2 DC Voltage Control Loop
    2. 2.2 Point A and B – AC/DC AC Phase-Current Sensing
      1. 2.2.1 Impact of Bandwidth
        1. 2.2.1.1 Steady State Analysis: Fundamental and Zero Crossing Currents
        2. 2.2.1.2 Transient Analysis: Step Power and Voltage Sag Response
      2. 2.2.2 Impact of Latency
        1. 2.2.2.1 Fault Analysis: Grid Short-Circuit
      3. 2.2.3 Impact of Gain Error
        1. 2.2.3.1 Power Disturbance in AC/DC Caused by Gain Error
        2. 2.2.3.2 AC/DC Response to Power Disturbance Caused by Gain Error
      4. 2.2.4 Impact of Offset
    3. 2.3 Point C and D – AC/DC DC Link Current Sensing
      1. 2.3.1 Impact of Bandwidth on Feedforward Performance
      2. 2.3.2 Impact of Latency on Power Switch Protection
      3. 2.3.3 Impact of Gain Error on Power Measurement
        1. 2.3.3.1 Transient Analysis: Feedforward in Point D
      4. 2.3.4 Impact of Offset
    4. 2.4 Summary of Positives and Negatives at Point A, B, C1/2 and D1/2 and Product Suggestions
  5. 3Current Sensing in DC/DC Converters
    1. 3.1 Basic Operation Principle of Isolated DC/DC Converter With Phase-Shift Control
    2. 3.2 Point E, F - DC/DC Current Sensing
      1. 3.2.1 Impact of Bandwidth
      2. 3.2.2 Impact of Gain Error
      3. 3.2.3 Impact of Offset Error
    3. 3.3 Point G - DC/DC Tank Current Sensing
    4. 3.4 Summary of Sensing Points E, F, and G and Product Suggestions
  6. 4Conclusion
  7. 5References

Point E, F - DC/DC Current Sensing

This section covers the output current sensing of the DC/DC stage. There is an option to place the current sensor at the negative battery connection (point E) or at positive battery connection (point F) as shown in Figure 3-2. Both options are equivalent from the control-loop regulation perspective. For point F, the power supply for the current sensor is floating above VBAT+ whereas for point E, the supply can be derived from the lower gate driver.

Figure 3-2 Current-Sensing Point E, F

To assess the impact of gain error, offset error, and bandwidth of the current sensor on the performance of the DC/DC converter, the model shown in Figure 1-2 was used for simulations.