SLYA048B March   2020  – June 2021 FDC1004 , FDC1004-Q1 , FDC2112 , FDC2112-Q1 , FDC2114 , FDC2114-Q1 , FDC2212 , FDC2212-Q1 , FDC2214 , FDC2214-Q1 , LDC0851 , LDC1001 , LDC1041 , LDC1051 , LDC1101 , LDC1312 , LDC1312-Q1 , LDC1314 , LDC1314-Q1 , LDC1612 , LDC1612-Q1 , LDC1614 , LDC1614-Q1 , LDC2112 , LDC2114 , LDC3114 , LDC3114-Q1

 

  1.   Trademarks
  2. 1Inductive and Capacitive Theory of Operation
    1. 1.1 Inductive Sensing Theory of Operation
    2. 1.2 Capacitive Sensing Theory of Operation
  3. 2FDC: Capacitive Level Sensing
    1. 2.1 Capacitive Technology Benefits in Liquid Level Sensing
    2. 2.2 Getting Started With Capacitive Liquid Level Sensing
    3. 2.3 Device Selection
    4. 2.4 Design Challenges and Additional Collateral
  4. 3LDC: Inductive Touch Buttons
    1. 3.1 Inductive Technology Benefits in Buttons
    2. 3.2 Getting Started With Inductive Buttons
    3. 3.3 Device Selection
    4. 3.4 Design Challenges and Additional Collateral
  5. 4LDC: Incremental Encoder and Event Counting
    1. 4.1 Inductive Technology Benefits in Incremental Encoders
    2. 4.2 Getting Started With an Inductive Incremental Encoder
    3. 4.3 Device Recommendations
    4. 4.4 Design Challenges and Additional Collateral
  6. 5LDC: Metal Proximity Sensor
    1. 5.1 Inductive Technology Benefits in Metal Proximity Detection
    2. 5.2 Criteria to Consider when Choosing Inductive Sensing for Metal Proximity Applications
      1. 5.2.1 Metal Target Movement in Relation to Inductive Coil
      2. 5.2.2 Sensing Distance
      3. 5.2.3 Size and Shape of Metal Target
      4. 5.2.4 Speed (Sample Rate versus Resolution)
      5. 5.2.5 Environmental Compensation
    3. 5.3 Getting Started With Inductive Metal Proximity Sensing
    4. 5.4 Device Recommendations
    5. 5.5 Design Challenges and Additional Collateral
  7. 6Revision History

Environmental Compensation

Inductive measurements may vary due to temperature. For high precision applications, it is recommended to use a channel in our multi-channel devices as a reference sensor. It is important for the reference sensor to be a duplicate of the sense coil in order to provide the most accurate matching. This additional sensor would enable a differential approach to inductive sensing, allowing for compensation due to drifts due to temperature and other environmental variants. The tradeoff is that this in this approach, is that there needs to be spacing to accommodate for an additional coil.

The LDC0851 is inherently a differential switch device – for simple switch applications, it is the recommended device

The criteria mentioned are general guidelines to consider whether inductive sensing is suitable for a particular application. For a more specific study, download the LDC calculator tool to estimate the feasibility of a specific application. For other common questions, visit our inductive sensing FAQ page.