SNLA450 July   2024 DP83822H , DP83822HF , DP83822I , DP83822IF , DP83826E , DP83826I , DP83848-EP , DP83848Q-Q1 , DP83867CR , DP83867CS , DP83867E , DP83867IR , DP83867IS , DP83TC812R-Q1 , DP83TC812S-Q1 , DP83TC813R-Q1 , DP83TC813S-Q1 , DP83TC814R-Q1 , DP83TC814S-Q1 , DP83TG720R-Q1 , DP83TG720S-Q1 , DP83TG721R-Q1 , DP83TG721S-Q1

 

  1.   1
  2.   Abstract
  3.   Trademarks
  4. 1Texas Instruments Ethernet PHY Drivers
  5. 2Ethernet PHY Driver Overview
    1. 2.1 Exploring Linux Driver Types
      1. 2.1.1 U-Boot Driver
      2. 2.1.2 Kernel Driver
  6. 3Driver Integration
    1. 3.1 Linux Device Tree
    2. 3.2 Integrating Driver
  7. 4Common Terminal Commands
    1. 4.1 Initialization Commands
      1. 4.1.1 dmesg | grep -i mdio
      2. 4.1.2 ifconfig
    2. 4.2 Functional Commands
      1. 4.2.1 Phytool
      2. 4.2.2 Ethtool
      3. 4.2.3 Forced Master/Slave
    3. 4.3 Diagnostic Commands
      1. 4.3.1 SQI
      2. 4.3.2 TDR
      3. 4.3.3 Throughput Testing - Ping and iPerf
  8. 5Summary
  9. 6References

Abstract

Linux drivers are essential software components that allow the operating system to communicate with hardware devices such as graphics cards, printers, and Ethernet physical layer devices (PHY). Without the drivers, Linux is unable to use the hardware effectively, resulting in devices not being recognized or functioning properly. This document aims to provide comprehensive guidance for developers seeking to integrate PHY functionality into Linux-based systems. By detailing the intricacies of PHY driver implementation within the Linux kernel, this application note equips developers with the knowledge and tools necessary to make sure seamless integration, designed for performance, and compatibility across a wide range of hardware platforms.