SNOA930C March   2015  – May 2021 LDC0851 , LDC1001 , LDC1001-Q1 , LDC1041 , LDC1051 , LDC1101 , LDC1312 , LDC1312-Q1 , LDC1314 , LDC1314-Q1 , LDC1612 , LDC1612-Q1 , LDC1614 , LDC1614-Q1 , LDC2112 , LDC2114 , LDC3114 , LDC3114-Q1

 

  1.   Trademarks
  2. 1The Sensor
    1. 1.1 Sensor Frequency
    2. 1.2 RS and RP
      1. 1.2.1 AC Resistance
      2. 1.2.2 Skin Effect
  3. 2Inductor Characteristics
    1. 2.1 Inductor Shape
      1. 2.1.1 Example Uses of Different Inductor Shapes
    2. 2.2 Number of Turns
    3. 2.3 Multiple Layers
      1. 2.3.1 Mutual Inductance of Coils in Series
      2. 2.3.2 Multi-Layer Parallel Inductor
      3. 2.3.3 Temperature Compensation
    4. 2.4 Inductor Size
    5. 2.5 Self-Resonance Frequency
      1. 2.5.1 Measurement of SRF
      2. 2.5.2 Techniques to Improve SRF for Wire-wound Inductors
  4. 3Capacitor Characteristics
    1. 3.1 Capacitor RS, Q, and SRF
    2. 3.2 Effect of Parasitic Capacitance
      1. 3.2.1 Recommended Capacitor Values
    3. 3.3 Capacitor Placement
  5. 4Physical Coil Design
    1. 4.1 Example Design Procedure Using WEBENCH
      1. 4.1.1 General Design Sequence
    2. 4.2 PCB Layout Recommendations
      1. 4.2.1 Minimize Conductors Near Sensor
      2. 4.2.2 Sensor Vias and Other Techniques for PCBs
  6. 5Summary
  7. 6References
  8. 7Revision History

Skin Effect

A DC current can take advantage of the entire cross section of a conductor. However, at higher frequencies electrical current prefers to simply travel along the surface of the conductor. This tendency is called Skin Effect, and is primarily a function of the conductivity and the frequency. With a copper conductor, more than 95% of a 1 MHz current flows in at the surface in a shell only 0.2 mm thick. At 10 MHz, the 95% of the current flows in a shell only 0.06 mm from the surface of the conductor.

The skin effect is the primary source of the increase in the AC RS at higher frequencies. This effect also affects the eddy currents on the target surface - the generated eddy currents flow on the surface of the conductive target closest to the inductor.