SNOA954D November   2019  – June 2021 LDC0851 , LDC1001 , LDC1001-Q1 , LDC1041 , LDC1051 , LDC1101 , LDC1312 , LDC1312-Q1 , LDC1314 , LDC1314-Q1 , LDC1612 , LDC1612-Q1 , LDC1614 , LDC1614-Q1 , LDC2112 , LDC2114 , LDC3114 , LDC3114-Q1

 

  1.   Trademarks
  2. 1LDC Applications
    1. 1.1 Axial Sensing
      1. 1.1.1 Buttons and Keypads
    2. 1.2 Event Counting
    3. 1.3 Other Types of Sensing
  3. 2Inductive Sensing Theory of Operation
  4. 3LDC Device Feature Overview
    1. 3.1 Sample Rate
    2. 3.2 Sensor L Measurement and Reference Frequency
    3. 3.3 Sensor RP Measurement
    4. 3.4 Sensor RP (Current) Drive Capability
    5. 3.5 Switch Output Functionality
    6. 3.6 Sensor Frequency Range
    7. 3.7 Multi-Channel Sensing
    8. 3.8 Power Management
    9. 3.9 Internal Algorithms
  5. 4Device Families
    1. 4.1 Inductive Touch Devices
      1. 4.1.1 Inductive Touch LDC Recommended Applications
    2. 4.2 Multichannel LDC Devices
      1. 4.2.1 Multi-Channel LDC Recommended Applications
      2. 4.2.2 LDC1101
        1. 4.2.2.1 LDC1101 Recommended Applications
      3. 4.2.3 LDC0851
        1. 4.2.3.1 Recommended Applications
  6. 5Summary
  7. 6Revision History

LDC Device Selection Guide

Texas Instruments revolutionized inductive sensing when it introduced the first inductance to digital converter in the industry. Since then, TI has released an entire portfolio of devices using LDC technology, providing devices with extended capabilities and more features. This application note reviews the currently available LDC devices, summarizes their capabilities, and provides device recommendations for various applications.