SNOAA35F April   2019  – December 2024 LM2901 , LM2901B , LM2901B-Q1 , LM2903 , LM2903-Q1 , LM2903B , LM2903B-Q1 , LM339 , LM339-N , LM393 , LM393-N , LM393B , LM397 , TL331 , TL331-Q1 , TL331B

 

  1.   1
  2.   Abstract
  3.   Trademarks
  4. Devices Covered in Application Note
    1. 1.1 Base Part Numbers
    2. 1.2 Input Voltage Offset Grades
    3. 1.3 Maximum Supply Voltage
    4. 1.4 High Reliability Options
  5. The New TL331B, TL391B, LM339B, LM393B, LM2901B and LM2903B B Versions
  6. PCN's to Change Classic Die to a New Die Design
    1. 3.1 PCN #1 for Single and Dual (TL331 and LMx93/LM2903)
    2. 3.2 PCN #2 for Single and Dual (TL331 and LMx93/LM2903)
    3. 3.3 PCN For Quad (LMx39, LM2901)
    4. 3.4 PCN for B Devices (including -Q1's)
    5. 3.5 Device PCN Summary
    6. 3.6 Determining Die Version Used
      1. 3.6.1 Determine Die Used for Single TL331 and Dual LM293, LM393, and LM2903 - PCN #1 (Ji3)
      2. 3.6.2 Determine Die Used for Single TL331 and Dual LM293, LM393, and LM2903 - PCN #2 (TiB)
      3. 3.6.3 Determine Die Used for Quad LM139, LM239, LM339, and LM2901
      4. 3.6.4 Determine Die Used for Post-PCN B Devices
  7. Changes to Package Top Markings
  8. Roughened Leadframe Finish
  9. Input Considerations
    1. 6.1  Input Stage Schematic – The Classic LM339 Family
    2. 6.2  Input Stage Schematic - New "B" and TiB Devices
    3. 6.3  Differences Between the Classic, "B" and Tib Die Devices
    4. 6.4  Input Voltage Range
    5. 6.5  Input Voltage Range vs. Common Mode Voltage Range
    6. 6.6  Reason for Input Range Headroom Limitation
    7. 6.7  Input Voltage Range Feature
    8. 6.8  Both Inputs Above Input Range Behavior
    9. 6.9  Negative Input Voltages
      1. 6.9.1 Maximum Input Current
      2. 6.9.2 Phase Reversal or Inversion
      3. 6.9.3 Protecting Inputs from Negative Voltages
        1. 6.9.3.1 Simple Resistor and Diode Clamp
        2. 6.9.3.2 Voltage Divider with Clamp
          1. 6.9.3.2.1 Split Voltage Divider with Clamp
    10. 6.10 Power-Up Behavior
    11. 6.11 Capacitors and Hysteresis
    12. 6.12 Output to Input Cross-Talk
  10. Output Stage Considerations
    1. 7.1 Output VOL and IOL
    2. 7.2 Pull-Up Resistor Selection
    3. 7.3 Short Circuit Sinking Current
    4. 7.4 Pulling Output Up Above Vcc
    5. 7.5 Negative Voltages Applied to Output
    6. 7.6 Adding Large Filter Capacitors To Output
  11. Power Supply Considerations
    1. 8.1 Supply Bypassing
      1. 8.1.1 Low VCC Guidance
      2. 8.1.2 Split Supply use
  12. General Comparator Usage
    1. 9.1 Unused Comparator Connections
      1. 9.1.1 Do Not Connect Inputs Directly to Ground
      2. 9.1.2 Unused Comparator Input Connections
      3. 9.1.3 Leave Outputs Floating
      4. 9.1.4 Prototyping
  13. 10PSpice and TINA TI Models
  14. 11Conclusion
  15. 12Related Documentation
    1. 12.1 Related Links
  16. 13Revision History

PCN's to Change Classic Die to a New Die Design

In 2021, Product Change Notifications (PCN) began to be issued to notify customers that the classic die is to be replaced with a new die for most of the LM339 family. These changes are part of our multiyear plan to transition products from our sun-setting 150-milimeter factories to newer, more efficient 300mm manufacturing processes and technologies. This does not effect the new B devices as these die are already in the new technology.

These PCN notices contain a list of the devices planned to change. These PCN's are sent to customers directly from the distributors. Most major distributors (Digikey, Mouser) have the PCN notices available on the device product page.

The existing electrical specification limits, part markings and orderable part numbers for the classic devices remain the same. Some of the electrical table typical numbers and graphs can change to reflect any major differences between the old die and new die. The new die devices have passed, or exceeded, all the qualifications of the classic die. A qualification summary is available within the associated PCN.

These high volume device families are assembled at multiple assembly sites, and not all of these assembly sites are converting to the new die at the same time. Therefore, as of this writing, there is a possibility to receive a mix of classic die and new dies in orders for a given high volume orderable part number (LM2903DR for example). The mix is between sealed containers (bag or reel) and not mixed within a single rail or reel. The reel or bag label provide the necessary die information.

To determine which die is used, the chip site and fab site location fields on the box label or bag label are viewed. Please see the Section 3.6.

Only the native TI Commercial and Automotive devices are affected by the PCN's. At this time, there are no plans to PCN the ex-National Semiconductor (the -N) versions. The Military (/883, -MIL), QML, Space and Rad Hard families using the ex-National die continue with the existing National die. Some native Texas Instruments Military devices can be affected by a PCN. These are listed in the associated PCN.