SN74LVTH16543
- Members of the Texas Instruments WidebusTM Family
- State-of-the-Art Advanced BiCMOS Technology (ABT) Design for 3.3-V Operation and Low Static-Power Dissipation
- Support Mixed-Mode Signal Operation (5-V Input and Output Voltages With 3.3-V VCC)
- Support Unregulated Battery Operation Down to 2.7 V
- Ioff and Power-Up 3-State Support Hot Insertion
- Bus Hold on Data Inputs Eliminates the Need for External Pullup/Pulldown Resistors
- Typical VOLP (Output Ground Bounce) < 0.8 V at VCC = 3.3 V, TA = 25°C
- Distributed VCC and GND Pin Configuration Minimizes High-Speed Switching Noise
- Flow-Through Architecture Optimizes PCB Layout
- Latch-Up Performance Exceeds 500 mA Per JESD 17
- ESD Protection Exceeds 2000 V Per MIL-STD-883, Method 3015; Exceeds 200 V Using Machine Model (C = 200 pF, R = 0)
- Package Options Include Plastic Shrink Small-Outline (DL) and Thin Shrink Small-Outline (DGG) Packages and 380-mil Fine-Pitch Ceramic Flat (WD) Package Using 25-mil Center-to-Center Spacings
Widebus is a trademark of Texas Instruments Incorporated.
The 'LVTH16543 devices are 16-bit registered transceivers designed for low-voltage (3.3-V) VCC operation, but with the capability to provide a TTL interface to a 5-V system environment. These devices can be used as two 8-bit transceivers or one 16-bit transceiver. Separate latch-enable (LEAB\ or LEBA\) and output-enable (OEAB\ or OEBA\) inputs are provided for each register to permit independent control in either direction of data flow.
The A-to-B enable (CEAB\) input must be low to enter data from A or to output data from B. If CEAB\ is low and LEAB\ is low, the A-to-B latches are transparent; a subsequent low-to-high transition of LEAB\ puts the A latches in the storage mode. With CEAB\ and OEAB\ both low, the 3-state B outputs are active and reflect the data present at the output of the A latches. Data flow from B to A is similar but requires using the CEBA\, LEBA\, and OEBA\ inputs.
Active bus-hold circuitry is provided to hold unused or floating data inputs at a valid logic level.
When VCC is between 0 and 1.5 V, the devices are in the high-impedance state during power up or power down. However, to ensure the high-impedance state above 1.5 V, OE\ should be tied to VCC through a pullup resistor; the minimum value of the resistor is determined by the current-sinking capability of the driver.
These devices are fully specified for hot-insertion applications using Ioff and power-up 3-state. The Ioff circuitry disables the outputs, preventing damaging current backflow through the devices when they are powered down. The power-up 3-state circuitry places the outputs in the high-impedance state during power up and power down, which prevents driver conflict.
The SN54LVTH16543 is characterized for operation over the full military temperature range of -55°C to 125°C. The SN74LVTH16543 is characterized for operation from -40°C to 85°C.
お客様が関心を持ちそうな類似品
比較対象デバイスと同等の機能で、ピン互換製品
比較対象デバイスと類似の機能
技術資料
設計および開発
その他のアイテムや必要なリソースを参照するには、以下のタイトルをクリックして詳細ページをご覧ください。
パッケージ | ピン数 | CAD シンボル、フットプリント、および 3D モデル |
---|---|---|
SSOP (DL) | 56 | Ultra Librarian |
TSSOP (DGG) | 56 | Ultra Librarian |
購入と品質
- RoHS
- REACH
- デバイスのマーキング
- リード端子の仕上げ / ボールの原材料
- MSL 定格 / ピーク リフロー
- MTBF/FIT 推定値
- 使用原材料
- 認定試験結果
- 継続的な信頼性モニタ試験結果
- ファブの拠点
- 組み立てを実施した拠点