產品詳細資料

Technology family HC Rating Military Operating temperature range (°C) -55 to 125
Technology family HC Rating Military Operating temperature range (°C) -55 to 125
CDIP (J) 16 135.3552 mm² 19.56 x 6.92
  • Independent Asynchronous Inputs and Outputs
  • Expandable in Either Direction
  • Reset Capability
  • Status Indicators on Inputs and Outputs
  • Three-State Outputs
  • Shift-Out Independent of Three-State Control
  • Fanout (Over Temperature Range)
    • Standard Outputs . . . . . . . . . . . . . . . 10 LSTTL Loads
    • Bus Driver Outputs . . . . . . . . . . . . . 15 LSTTL Loads
  • Wide Operating Temperature Range . . . -55°C to 125°C
  • Balanced Propagation Delay and Transition Times
  • Significant Power Reduction Compared to LSTTL Logic ICs
  • HC Types
    • 2V to 6V Operation
    • High Noise Immunity: NIL = 30%, NIH = 30% of VCC at VCC = 5V
  • HCT Types
    • 4.5V to 5.5V Operation
    • Direct LSTTL Input Logic Compatibility, VIL = 0.8V (Max), VIH = 2V (Min)
    • CMOS Input Compatibility, Il ≤ 1µA at VOL, VOH
  • Applications
    • Bit-Rate Smoothing
    • CPU/Terminal Buffering
    • Data Communications
    • Peripheral Buffering
    • Line Printer Input Buffers
    • Auto-Dialers
    • CRT Buffer Memories
    • Radar Data Acquisition
  • Independent Asynchronous Inputs and Outputs
  • Expandable in Either Direction
  • Reset Capability
  • Status Indicators on Inputs and Outputs
  • Three-State Outputs
  • Shift-Out Independent of Three-State Control
  • Fanout (Over Temperature Range)
    • Standard Outputs . . . . . . . . . . . . . . . 10 LSTTL Loads
    • Bus Driver Outputs . . . . . . . . . . . . . 15 LSTTL Loads
  • Wide Operating Temperature Range . . . -55°C to 125°C
  • Balanced Propagation Delay and Transition Times
  • Significant Power Reduction Compared to LSTTL Logic ICs
  • HC Types
    • 2V to 6V Operation
    • High Noise Immunity: NIL = 30%, NIH = 30% of VCC at VCC = 5V
  • HCT Types
    • 4.5V to 5.5V Operation
    • Direct LSTTL Input Logic Compatibility, VIL = 0.8V (Max), VIH = 2V (Min)
    • CMOS Input Compatibility, Il ≤ 1µA at VOL, VOH
  • Applications
    • Bit-Rate Smoothing
    • CPU/Terminal Buffering
    • Data Communications
    • Peripheral Buffering
    • Line Printer Input Buffers
    • Auto-Dialers
    • CRT Buffer Memories
    • Radar Data Acquisition

The ’HC40105 and ’HCT40105 are high-speed silicon-gate CMOS devices that are compatible, except for "shift-out" circuitry, with the CD40105B. They are low-power first-in-out (FIFO) "elastic" storage registers that can store 16 four-bit words. The 40105 is capable of handling input and output data at different shifting rates. This feature makes particularly useful as a buffer between asynchronous systems.

Each work position in the register is clocked by a control flip-flop, which stores a marker bit. A "1" signifies that the position’s data is filled and a "0" denotes a vacancy in that position. The control flip-flop detects the state of the preceding flip-flop and communicates its own status to the succeeding flip-flop. When a control flip-flop is in the "0" state and sees a "1" in the preceeding flip-flop, it generates a clock pulse that transfers data from the preceding four data latches into its own four data latches and resets the preceding flip-flop to "0". The first and last control flip-flops have buffered outputs. Since all empty locations "bubble" automatically to the input end, and all valid data ripple through to the output end, the status of the first control flip-flop (DATA-IN READY) indicates if the FIFO is full, and the status of the last flip-flop (DATA-OUT READY) indicates if the FIFO contains data. As the earliest data are removed from the bottom of the data stack (the output end), all data entered later will automatically propagate (ripple) toward the output.

The ’HC40105 and ’HCT40105 are high-speed silicon-gate CMOS devices that are compatible, except for "shift-out" circuitry, with the CD40105B. They are low-power first-in-out (FIFO) "elastic" storage registers that can store 16 four-bit words. The 40105 is capable of handling input and output data at different shifting rates. This feature makes particularly useful as a buffer between asynchronous systems.

Each work position in the register is clocked by a control flip-flop, which stores a marker bit. A "1" signifies that the position’s data is filled and a "0" denotes a vacancy in that position. The control flip-flop detects the state of the preceding flip-flop and communicates its own status to the succeeding flip-flop. When a control flip-flop is in the "0" state and sees a "1" in the preceeding flip-flop, it generates a clock pulse that transfers data from the preceding four data latches into its own four data latches and resets the preceding flip-flop to "0". The first and last control flip-flops have buffered outputs. Since all empty locations "bubble" automatically to the input end, and all valid data ripple through to the output end, the status of the first control flip-flop (DATA-IN READY) indicates if the FIFO is full, and the status of the last flip-flop (DATA-OUT READY) indicates if the FIFO contains data. As the earliest data are removed from the bottom of the data stack (the output end), all data entered later will automatically propagate (ripple) toward the output.

下載

技術文件

star =TI 所選的此產品重要文件
找不到結果。請清除您的搜尋條件,然後再試一次。
檢視所有 1
類型 標題 日期
* Data sheet CD54HC40105, CD74HC40105, CD54HCT40105, CD74HCT40105 datasheet (Rev. C) 2003年 10月 16日

訂購與品質

內含資訊:
  • RoHS
  • REACH
  • 產品標記
  • 鉛塗層/球物料
  • MSL 等級/回焊峰值
  • MTBF/FIT 估算值
  • 材料內容
  • 認證摘要
  • 進行中持續性的可靠性監測
內含資訊:
  • 晶圓廠位置
  • 組裝地點

支援與培訓

內含 TI 工程師技術支援的 TI E2E™ 論壇

內容係由 TI 和社群貢獻者依「現狀」提供,且不構成 TI 規範。檢視使用條款

若有關於品質、封裝或訂購 TI 產品的問題,請參閱 TI 支援。​​​​​​​​​​​​​​