產品詳細資料

Supply voltage (min) (V) 4.5 Supply voltage (max) (V) 5.5 Number of channels 18 IOL (max) (mA) 64 IOH (max) (mA) -32 Input type TTL-Compatible CMOS Output type 3-State Features Bus-hold, Partial power down (Ioff), Very high speed (tpd 5-10ns) Technology family ABT Rating Military Operating temperature range (°C) -55 to 125
Supply voltage (min) (V) 4.5 Supply voltage (max) (V) 5.5 Number of channels 18 IOL (max) (mA) 64 IOH (max) (mA) -32 Input type TTL-Compatible CMOS Output type 3-State Features Bus-hold, Partial power down (Ioff), Very high speed (tpd 5-10ns) Technology family ABT Rating Military Operating temperature range (°C) -55 to 125
CFP (HV) 68 156.7504 mm² 12.52 x 12.52
  • Members of the Texas Instruments SCOPETM Family of Testability Products
  • Members of the Texas Instruments WidebusTM Family
  • Compatible With the IEEE Standard 1149.1-1990 (JTAG) Test Access Port
    and Boundary-Scan Architecture
  • UBTTM (Universal Bus Transceiver) Combines D-Type Latches and D-Type Flip-Flops for Operation in Transparent, Latched, or Clocked Mode
  • Bus Hold on Data Inputs Eliminates the Need for External Pullup Resistors
  • B-Port Outputs of 'ABTH182502A Devices Have Equivalent 25- Series Resistors, So No External Resistors Are Required
  • State-of-the-Art EPIC-IIBTM BiCMOS Design
  • One Boundary-Scan Cell Per I/O Architecture Improves Scan Efficiency
  • SCOPE Instruction Set
    • IEEE Standard 1149.1-1990 Required Instructions and Optional CLAMP and HIGHZ
    • Parallel-Signature Analysis at Inputs
    • Pseudo-Random Pattern Generation From Outputs
    • Sample Inputs/Toggle Outputs
    • Binary Count From Outputs
    • Device Identification
    • Even-Parity Opcodes
  • Packaged in 64-Pin Plastic Thin Quad Flat (PM) Packages Using 0.5-mm Center-to-Center Spacings and 68-Pin Ceramic Quad Flat (HV) Packages Using 25-mil Center-to-Center Spacings

    SCOPE, Widebus, UBT, and EPIC-IIB are trademarks of Texas Instruments Incorporated.

     

     

  • Members of the Texas Instruments SCOPETM Family of Testability Products
  • Members of the Texas Instruments WidebusTM Family
  • Compatible With the IEEE Standard 1149.1-1990 (JTAG) Test Access Port
    and Boundary-Scan Architecture
  • UBTTM (Universal Bus Transceiver) Combines D-Type Latches and D-Type Flip-Flops for Operation in Transparent, Latched, or Clocked Mode
  • Bus Hold on Data Inputs Eliminates the Need for External Pullup Resistors
  • B-Port Outputs of 'ABTH182502A Devices Have Equivalent 25- Series Resistors, So No External Resistors Are Required
  • State-of-the-Art EPIC-IIBTM BiCMOS Design
  • One Boundary-Scan Cell Per I/O Architecture Improves Scan Efficiency
  • SCOPE Instruction Set
    • IEEE Standard 1149.1-1990 Required Instructions and Optional CLAMP and HIGHZ
    • Parallel-Signature Analysis at Inputs
    • Pseudo-Random Pattern Generation From Outputs
    • Sample Inputs/Toggle Outputs
    • Binary Count From Outputs
    • Device Identification
    • Even-Parity Opcodes
  • Packaged in 64-Pin Plastic Thin Quad Flat (PM) Packages Using 0.5-mm Center-to-Center Spacings and 68-Pin Ceramic Quad Flat (HV) Packages Using 25-mil Center-to-Center Spacings

    SCOPE, Widebus, UBT, and EPIC-IIB are trademarks of Texas Instruments Incorporated.

     

     

The 'ABTH18502A and 'ABTH182502A scan test devices with 18-bit universal bus transceivers are members of the Texas Instruments SCOPE testability integrated-circuit family. This family of devices supports IEEE Standard 1149.1-1990 boundary scan to facilitate testing of complex circuit-board assemblies. Scan access to the test circuitry is accomplished via the 4-wire test access port (TAP) interface.

In the normal mode, these devices are 18-bit universal bus transceivers that combine D-type latches and D-type flip-flops to allow data flow in transparent, latched, or clocked modes. They can be used either as two 9-bit transceivers or one 18-bit transceiver. The test circuitry can be activated by the TAP to take snapshot samples of the data appearing at the device pins or to perform a self test on the boundary-test cells. Activating the TAP in the normal mode does not affect the functional operation of the SCOPE universal bus transceivers.

Data flow in each direction is controlled by output-enable ( and ), latch-enable (LEAB and LEBA), and clock (CLKAB and CLKBA) inputs. For A-to-B data flow, the device operates in the transparent mode when LEAB is high. When LEAB is low, the A-bus data is latched while CLKAB is held at a static low or high logic level. Otherwise, if LEAB is low, A-bus data is stored on a low-to-high transition of CLKAB. When is low, the B outputs are active. When is high, the B outputs are in the high-impedance state. B-to-A data flow is similar to A-to-B data flow but uses the , LEBA, and CLKBA inputs.

In the test mode, the normal operation of the SCOPE universal bus transceivers is inhibited and the test circuitry is enabled to observe and control the I/O boundary of the device. When enabled, the test circuitry performs boundary-scan test operations according to the protocol described in IEEE Standard 1149.1-1990.

 

Four dedicated test pins observe and control the operation of the test circuitry: test data input (TDI), test data output (TDO), test mode select (TMS), and test clock (TCK). Additionally, the test circuitry performs other testing functions such as parallel-signature analysis (PSA) on data inputs and pseudo-random pattern generation (PRPG) from data outputs. All testing and scan operations are synchronized to the TAP interface.

Improved scan efficiency is accomplished through the adoption of a one boundary-scan cell (BSC) per I/O pin architecture. This architecture is implemented in such a way as to capture the most pertinent test data. A PSA/COUNT instruction also is included to ease the testing of memories and other circuits where a binary count addressing scheme is useful.

Active bus-hold circuitry holds unused or floating data inputs at a valid logic level.

The B-port outputs of 'ABTH182502A, which are designed to source or sink up to 12 mA, include 25- series resistors to reduce overshoot and undershoot.

The SN54ABTH18502A and SN54ABTH182502A are characterized for operation over the full military temperature range of -55°C to 125°C. The SN74ABTH18502A and SN74ABTH182502A are characterized for operation from -40°C to 85°C.

 

 

A-to-B data flow is shown. B-to-A data flow is similar but uses OEBA\, LEBA, and CLKBA.

Output level before the indicated steady-state input conditions were established

The 'ABTH18502A and 'ABTH182502A scan test devices with 18-bit universal bus transceivers are members of the Texas Instruments SCOPE testability integrated-circuit family. This family of devices supports IEEE Standard 1149.1-1990 boundary scan to facilitate testing of complex circuit-board assemblies. Scan access to the test circuitry is accomplished via the 4-wire test access port (TAP) interface.

In the normal mode, these devices are 18-bit universal bus transceivers that combine D-type latches and D-type flip-flops to allow data flow in transparent, latched, or clocked modes. They can be used either as two 9-bit transceivers or one 18-bit transceiver. The test circuitry can be activated by the TAP to take snapshot samples of the data appearing at the device pins or to perform a self test on the boundary-test cells. Activating the TAP in the normal mode does not affect the functional operation of the SCOPE universal bus transceivers.

Data flow in each direction is controlled by output-enable ( and ), latch-enable (LEAB and LEBA), and clock (CLKAB and CLKBA) inputs. For A-to-B data flow, the device operates in the transparent mode when LEAB is high. When LEAB is low, the A-bus data is latched while CLKAB is held at a static low or high logic level. Otherwise, if LEAB is low, A-bus data is stored on a low-to-high transition of CLKAB. When is low, the B outputs are active. When is high, the B outputs are in the high-impedance state. B-to-A data flow is similar to A-to-B data flow but uses the , LEBA, and CLKBA inputs.

In the test mode, the normal operation of the SCOPE universal bus transceivers is inhibited and the test circuitry is enabled to observe and control the I/O boundary of the device. When enabled, the test circuitry performs boundary-scan test operations according to the protocol described in IEEE Standard 1149.1-1990.

 

Four dedicated test pins observe and control the operation of the test circuitry: test data input (TDI), test data output (TDO), test mode select (TMS), and test clock (TCK). Additionally, the test circuitry performs other testing functions such as parallel-signature analysis (PSA) on data inputs and pseudo-random pattern generation (PRPG) from data outputs. All testing and scan operations are synchronized to the TAP interface.

Improved scan efficiency is accomplished through the adoption of a one boundary-scan cell (BSC) per I/O pin architecture. This architecture is implemented in such a way as to capture the most pertinent test data. A PSA/COUNT instruction also is included to ease the testing of memories and other circuits where a binary count addressing scheme is useful.

Active bus-hold circuitry holds unused or floating data inputs at a valid logic level.

The B-port outputs of 'ABTH182502A, which are designed to source or sink up to 12 mA, include 25- series resistors to reduce overshoot and undershoot.

The SN54ABTH18502A and SN54ABTH182502A are characterized for operation over the full military temperature range of -55°C to 125°C. The SN74ABTH18502A and SN74ABTH182502A are characterized for operation from -40°C to 85°C.

 

 

A-to-B data flow is shown. B-to-A data flow is similar but uses OEBA\, LEBA, and CLKBA.

Output level before the indicated steady-state input conditions were established

下載 觀看有字幕稿的影片 影片

技術文件

star =TI 所選的此產品重要文件
找不到結果。請清除您的搜尋條件,然後再試一次。
檢視所有 20
類型 標題 日期
* Data sheet Scan Test Devices With 18-Bit Universal Bus Transceivers datasheet (Rev. E) 1996年 12月 1日
* SMD SN54ABTH18502A SMD 5962-95614 2016年 6月 21日
Application note Implications of Slow or Floating CMOS Inputs (Rev. E) 2021年 7月 26日
Selection guide Logic Guide (Rev. AB) 2017年 6月 12日
Application note Understanding and Interpreting Standard-Logic Data Sheets (Rev. C) 2015年 12月 2日
User guide LOGIC Pocket Data Book (Rev. B) 2007年 1月 16日
Application note Semiconductor Packing Material Electrostatic Discharge (ESD) Protection 2004年 7月 8日
Application note Selecting the Right Level Translation Solution (Rev. A) 2004年 6月 22日
Application note Quad Flatpack No-Lead Logic Packages (Rev. D) 2004年 2月 16日
Application note TI IBIS File Creation, Validation, and Distribution Processes 2002年 8月 29日
Application note Power-Up 3-State (PU3S) Circuits in TI Standard Logic Devices 2002年 5月 10日
Selection guide Advanced Bus Interface Logic Selection Guide 2001年 1月 9日
Application note Bus-Interface Devices With Output-Damping Resistors Or Reduced-Drive Outputs (Rev. A) 1997年 8月 1日
Application note Advanced BiCMOS Technology (ABT) Logic Characterization Information (Rev. B) 1997年 6月 1日
Application note Designing With Logic (Rev. C) 1997年 6月 1日
Application note Advanced BiCMOS Technology (ABT) Logic Enables Optimal System Design (Rev. A) 1997年 3月 1日
Application note Family of Curves Demonstrating Output Skews for Advanced BiCMOS Devices (Rev. A) 1996年 12月 1日
Application note Input and Output Characteristics of Digital Integrated Circuits 1996年 10月 1日
Application note Live Insertion 1996年 10月 1日
Application note Understanding Advanced Bus-Interface Products Design Guide 1996年 5月 1日

設計與開發

如需其他條款或必要資源,請按一下下方的任何標題以檢視詳細頁面 (如有)。

模擬型號

BSDL Model of SN74ABTH18502A

SCTM017.ZIP (3 KB) - BSDL Model
封裝 針腳 CAD 符號、佔位空間與 3D 模型
CFP (HV) 68 Ultra Librarian

訂購與品質

內含資訊:
  • RoHS
  • REACH
  • 產品標記
  • 鉛塗層/球物料
  • MSL 等級/回焊峰值
  • MTBF/FIT 估算值
  • 材料內容
  • 認證摘要
  • 進行中持續性的可靠性監測
內含資訊:
  • 晶圓廠位置
  • 組裝地點

支援與培訓

內含 TI 工程師技術支援的 TI E2E™ 論壇

內容係由 TI 和社群貢獻者依「現狀」提供,且不構成 TI 規範。檢視使用條款

若有關於品質、封裝或訂購 TI 產品的問題,請參閱 TI 支援。​​​​​​​​​​​​​​

影片