現在提供此產品的更新版本
可直接投入的替代產品,相較於所比較的裝置,具備升級功能
SN74AVC4T774
- Each channel has an independent DIR control input
- Control inputs VIH/VIL levels are referenced to VCCA voltage
- Fully configurable dual-rail design allows each port to operate over the full 1.1V to 3.6V power-supply range
- I/Os are 4.6V tolerant
- Ioff Supports partial power-down-mode operation
- Typical data rates
- 380Mbps (1.8V to 3.3V translation)
- 200Mbps (<1.8V to 3.3V translation)
- 200Mbps (translate to 2.5V or 1.8V)
- 150Mbps (translate to 1.5V)
- 100Mbps (translate to 1.2V)
- Latch-up performance exceeds 100 mA Per JESD 78, class II
- ESD Protection exceeds the following levels (tested per JESD 22)
- ±8000V Human-body model (A114-A)
- 250V Machine model (A115-A)
- ±1500V Charged-device model (C101)
This 4-bit noninverting bus transceiver uses two separate configurable power-supply rails. The A port is designed to track VCCA. VCCA accepts any supply voltage from 1.1 V to 3.6V. The B port is designed to track VCCB. VCCB accepts any supply voltage from 1.1 to 3.6V. The SN74AVC4T774 is optimized to operate with VCCA/VCCB set at 1.4V to 3.6V. It is operational with VCCA/VCCB as low as 1.2V. This allows for universal low-voltage bi-directional translation between any of the 1.2V, 1.5V, 1.8V, 2.5V, and 3.3V voltage nodes.
The SN74AVC4T774 is designed for asynchronous communication between data buses. The logic levels of the direction-control (DIR) input and the output-enable ( OE) input activate either the B-port outputs or the A-port outputs or place both output ports in the high-impedance mode. The device transmits data from the A bus to the B bus when the B outputs are activated, and from the B bus to the A bus when the A outputs are activated. The input circuitry on both A and B ports is always active and must have a logic HIGH or LOW level applied to prevent excess ICC and ICCZ.
The SN74AVC4T774 is designed so that the control pins (DIR1, DIR2, DIR3, DIR4, and OE) are supplied by VCCA. This device is fully specified for partial-power-down applications using Ioff. The Ioff circuitry disables the outputs, preventing damaging current backflow through the device when it is powered down. The VCC isolation feature ensures that if either VCC input is at GND, then both ports are in the high-impedance state.
For a high-impedance state during power-up or power-down, OE should be tied to VCCA through a pullup resistor; the minimum value of the resistor is determined by the current-sinking capability of the driver. Since this device has CMOS inputs, it is very important to not allow them to float. If the inputs are not driven to either a high VCC state, or a low-GND state, an undesirable larger than expected ICC current may result. Since the input voltage settlement is governed by many factors (for example, capacitance, board-layout, package inductance, surrounding conditions, and so forth), ensuring that they these inputs are kept out of erroneous switching states and tying them to either a high or a low level minimizes the leakage-current.
技術文件
設計與開發
如需其他條款或必要資源,請按一下下方的任何標題以檢視詳細頁面 (如有)。
14-24-LOGIC-EVM — 適用於 14 針腳至 24 針腳 D、DB、DGV、DW、DYY、NS 和 PW 封裝的邏輯產品通用評估模組
14-24-LOGIC-EVM 評估模組 (EVM) 設計用於支援任何 14 針腳至 24 針腳 D、DW、DB、NS、PW、DYY 或 DGV 封裝的任何邏輯裝置。
14-24-NL-LOGIC-EVM — 適用於 14 針腳至 24 針腳無引線封裝的邏輯產品通用評估模組
14-24-NL-LOGIC-EVM 是一款靈活的評估模組 (EVM),設計用途可支援任何具有 14 針腳至 24 針腳 BQA、BQB、RGY、RSV、RJW 或 RHL 封裝的邏輯或轉換裝置。
AVCLVCDIRCNTRL-EVM — 適用於方向控制雙向轉換裝置、支援 AVC 和 LVC 的通用 EVM
The generic EVM is designed to support one, two, four and eight channel LVC and AVC direction-controlled translation devices. It also supports the bus hold and automotive -Q1 devices in the same number of channels. The AVC are low voltage translation devices with lower drive strength of 12mA. LVC (...)
封裝 | 針腳 | CAD 符號、佔位空間與 3D 模型 |
---|---|---|
SOT-23-THN (DYY) | 16 | Ultra Librarian |
TSSOP (PW) | 16 | Ultra Librarian |
UQFN (RSV) | 16 | Ultra Librarian |
VQFN (RGY) | 16 | Ultra Librarian |
WQFN (BQB) | 16 | Ultra Librarian |
訂購與品質
- RoHS
- REACH
- 產品標記
- 鉛塗層/球物料
- MSL 等級/回焊峰值
- MTBF/FIT 估算值
- 材料內容
- 認證摘要
- 進行中持續性的可靠性監測
- 晶圓廠位置
- 組裝地點