GERA024 December   2022 AMC1202 , AMC1302 , AMC1306M05 , AMC22C11 , AMC22C12 , AMC23C10 , AMC23C11 , AMC23C12 , AMC23C14 , AMC23C15 , AMC3302 , AMC3306M05

 

  1.   1
  2.   Kurzfassung
  3.   Marken
  4. 1Einführung
    1. 1.1 DC-Ladestation für Elektrofahrzeuge
    2. 1.2 Auswahl der Strommesstechnologie und äquivalentes Modell
      1. 1.2.1 Strommessung mit Shunt-basierter Lösung
      2. 1.2.2 Äquivalenzmodell der Sensortechnologie
  5. 2Strommessung in AC/DC-Wandlern
    1. 2.1 Grundlegende Hardware und Steuerungsbeschreibung von AC/DC
      1. 2.1.1 AC Stromregelkreise
      2. 2.1.2 Gleichspannungsregelkreis
    2. 2.2 Punkt A und B – AC/DC AC-Phasenstrommessung
      1. 2.2.1 Auswirkungen der Bandbreite
        1. 2.2.1.1 Stationäre Zustandsanalyse: Grund- und Nulldurchgangs-Ströme
        2. 2.2.1.2 Transientenanalyse: Sprungleistung und Spannungseinbruchverhalten
      2. 2.2.2 Auswirkungen der Latenz
        1. 2.2.2.1 Fehleranalyse: Kurzschluss im Stromnetz
      3. 2.2.3 Auswirkungen des Verstärkungsfehlers
        1. 2.2.3.1 Spannungsstörung in AC/DC durch Verstärkungsfehler
        2. 2.2.3.2 AC/DC-Antwort auf durch Verstärkungsfehler verursachte Stromversorgungsstörung
      4. 2.2.4 Auswirkungen des Offset
    3. 2.3 Punkt C und D – AC/DC DC-Link-Strommessung
      1. 2.3.1 Auswirkungen der Bandbreite auf die Feed-Forward-Leistung
      2. 2.3.2 Auswirkungen der Latenz auf den Schutz der Leistungsschalter
      3. 2.3.3 Auswirkungen des Verstärkungsfehlers auf die Leistungsmessung
        1. 2.3.3.1 Transientenanalyse: Feed Forward in Punkt D
      4. 2.3.4 Auswirkungen des Offset
    4. 2.4 Zusammenfassung der positiven und negativen Punkte an den Punkten A, B, C1/2 und D1/2 sowie Produktvorschläge
  6. 3Strommessung in DC/DC-Wandlern
    1. 3.1 Grundlegendes Funktionsprinzip eines isolierten DC/DC-Wandlers mit Phasenverschiebungssteuerung
    2. 3.2 Punkt E, F – DC/DC-Strommessung
      1. 3.2.1 Auswirkungen der Bandbreite
      2. 3.2.2 Auswirkungen des Verstärkungsfehlers
      3. 3.2.3 Auswirkung des Offsetfehlers
    3. 3.3 Punkt G – DC/DC-Tankstrommessung
    4. 3.4 Zusammenfassung der Sensorpunkte E, F, G und Produktvorschläge
  7. 4Fazit
  8. 5Quellennachweise

Auswirkungen der Latenz auf den Schutz der Leistungsschalter

Die maximale Latenz der Sensorstufe muss nur für Punkt C ausgewertet werden, da Punkt C den Leistungsbausteinen am nächsten kommt. Die Position dieses Sensors ermöglicht die Erkennung von Überstrom und Kurzschlüssen, allerdings auf Kosten der Erhöhung der parasitären Induktivitäten in der Schleife. Die Erkennungslatenz muss kürzer sein als die Kurzschlusswiderstandsdauer des Leistungsschalters und hängt daher von der Schaltertechnologie ab. Die folgenden Zahlen sind nur Richtlinien. Die Angaben zur Widerstandsdauer entnehmen Sie bitte den Datenblättern des Geräts:

  • Sic-MOSFET: Maximale Latenz von 1–3 μs
  • IGBT: Maximale Latenz von 2–10 μs
  • Gan-FETs < 3 μs

Neben der Latenz des Überstromsensors müssen auch die Verzögerung des Eingangsfilters, die Reaktionszeit der MCU und die Ausschaltverzögerung des Gate-Treibers berücksichtigt werden. Um eine effektive Ausschaltverzögerung von < 1.5 μs zu erreichen, muss die Latenz des Überstromsensors < 1 μs betragen. TI bietet eine Reihe von isolierten Komparatoren mit Latenzen < 300 ns an, die speziell für diese Anwendung entwickelt wurden.