KOKA059 December   2022 AMC1202 , AMC1302 , AMC1306M05 , AMC22C11 , AMC22C12 , AMC23C10 , AMC23C11 , AMC23C12 , AMC23C14 , AMC23C15 , AMC3302 , AMC3306M05

 

  1.   1
  2.   요약
  3.   상표
  4. 1머리말
    1. 1.1 전기 자동차용 DC 충전소
    2. 1.2 전류 감지 기술 선택 및 동급 모델
      1. 1.2.1 션트 기반 솔루션으로 전류 감지
      2. 1.2.2 감지 기술의 동급 모델
  5. 2AC/DC 컨버터의 전류 감지
    1. 2.1 AC/DC의 기본 하드웨어 및 제어 설명
      1. 2.1.1 AC 전류 제어 루프
      2. 2.1.2 DC 전압 제어 루프
    2. 2.2 지점 A 및 B – AC/DC AC 위상 전류 감지
      1. 2.2.1 대역폭의 영향
        1. 2.2.1.1 정상 상태 분석: 기본 및 제로 크로싱 전류
        2. 2.2.1.2 과도 현상 분석: 스텝 전력 및 전압 저하 응답
      2. 2.2.2 지연의 영향
        1. 2.2.2.1 고장 분석: 그리드 단락
      3. 2.2.3 게인 오류의 영향
        1. 2.2.3.1 게인 오류로 인한 AC/DC의 전력 장애
        2. 2.2.3.2 게인 오류로 인한 전력 장애에 대한 AC/DC 응답
      4. 2.2.4 오프셋의 영향
    3. 2.3 지점 C 및 D – AC/DC 링크 전류 감지
      1. 2.3.1 대역폭이 피드포워드 성능에 미치는 영향
      2. 2.3.2 지연이 전원 스위치 보호에 미치는 영향
      3. 2.3.3 게인 오류가 전력 측정에 미치는 영향
        1. 2.3.3.1 과도 현상 분석: 지점 D의 피드포워드
      4. 2.3.4 오프셋의 영향
    4. 2.4 지점 A, B, C1/2 및 D1/2및 제품 제안의 장점과 단점 요약
  6. 3DC/DC 컨버터의 전류 감지
    1. 3.1 위상 변이 제어를 사용하는 절연 DC/DC 컨버터의 기본 작동 원리
    2. 3.2 지점 E, F-DC/DC 전류 감지
      1. 3.2.1 대역폭의 영향
      2. 3.2.2 게인 오류의 영향
      3. 3.2.3 오프셋 오류의 영향
    3. 3.3 지점 G - DC/DC 탱크 전류 감지
    4. 3.4 감지 지점 E, F, G 및 제품 제안 요약
  7. 4결론
  8. 5참고 자료

추상

전 세계 정부가 환경 지속 가능성 목표를 달성하기 위해 노력하고 자동차 업계가 차량 전기화를 가속화하기 위해 더 많은 투자를 계획함에 따라 내연기관에서 전기 자동차(EV)로의 전환은 불가피해 보입니다. 최근 몇 년간 DC 고속 충전소의 용량이 크게 증가하였습니다. 한때 150kW가 표준이었던 용량은 이제 350kW 이상이며, 개선은 계속되고 있습니다. 350kW 이상에 도달하기 위해 일반적으로 20kW~40kW의 모듈을 병렬로 쌓고 상위 레벨 제어 루프에서 해당 모듈의 부하 밸런싱을 병렬로 수행하는 기술을 사용합니다. 전류 및 전압 감지 기술은 DC 고속 충전소의 전원 모듈 제어 루프에 중요한 역할을 합니다. 이 애플리케이션 보고서는 EV 충전 애플리케이션의 전류 센서에 대한 설계 고려 사항을 살펴보고, 특히 시스템 성능과 관련된 게인 오류, 오프셋, 대역폭 및 지연 시간에 중점을 두고 있습니다.