SNOA954D November   2019  – June 2021 LDC0851 , LDC1001 , LDC1001-Q1 , LDC1041 , LDC1051 , LDC1101 , LDC1312 , LDC1312-Q1 , LDC1314 , LDC1314-Q1 , LDC1612 , LDC1612-Q1 , LDC1614 , LDC1614-Q1 , LDC2112 , LDC2114 , LDC3114 , LDC3114-Q1

 

  1.   Trademarks
  2. 1LDC Applications
    1. 1.1 Axial Sensing
      1. 1.1.1 Buttons and Keypads
    2. 1.2 Event Counting
    3. 1.3 Other Types of Sensing
  3. 2Inductive Sensing Theory of Operation
  4. 3LDC Device Feature Overview
    1. 3.1 Sample Rate
    2. 3.2 Sensor L Measurement and Reference Frequency
    3. 3.3 Sensor RP Measurement
    4. 3.4 Sensor RP (Current) Drive Capability
    5. 3.5 Switch Output Functionality
    6. 3.6 Sensor Frequency Range
    7. 3.7 Multi-Channel Sensing
    8. 3.8 Power Management
    9. 3.9 Internal Algorithms
  5. 4Device Families
    1. 4.1 Inductive Touch Devices
      1. 4.1.1 Inductive Touch LDC Recommended Applications
    2. 4.2 Multichannel LDC Devices
      1. 4.2.1 Multi-Channel LDC Recommended Applications
      2. 4.2.2 LDC1101
        1. 4.2.2.1 LDC1101 Recommended Applications
      3. 4.2.3 LDC0851
        1. 4.2.3.1 Recommended Applications
  6. 5Summary
  7. 6Revision History

Switch Output Functionality

The LDC0851 is an inductive comparator with a single-pin switched output. The LDC1101 can be configured to toggle the SDO output pin based on either the RP or the L conversion result, and the threshold can even be dynamically changed.

If this feature is needed, the LDC0851 is recommended for all applications when the maximum sample rate is less than 4 kSPS. If the application requires a higher sample rate, then the LDC1101 is recommended.