SNOA957B September   2016  – June 2021 LDC0851 , LDC1001 , LDC1001-Q1 , LDC1041 , LDC1051 , LDC1101 , LDC1312 , LDC1312-Q1 , LDC1314 , LDC1314-Q1 , LDC1612 , LDC1612-Q1 , LDC1614 , LDC1614-Q1 , LDC2112 , LDC2114 , LDC3114 , LDC3114-Q1

 

  1.   Trademarks
  2. 1The Sensor
  3. 2Eddy Currents
    1. 2.1 Image Currents and Target Size
    2. 2.2 Skin Depth
    3. 2.3 Sensors Have Two Sides
    4. 2.4 LDC Interaction Through Conductor
  4. 3Target Shape
  5. 4Target Composition
    1. 4.1 Perfect Target Material Characteristics
    2. 4.2 Aluminum Targets
    3. 4.3 Copper Targets
    4. 4.4 Steel and Magnetic Material Targets
    5. 4.5 Conductive Ink
    6. 4.6 Ineffective Target Materials
  6. 5Summary
  7. 6References
  8. 7Revision History

Summary

LDC systems provide the highest performance when the target is able to provide the largest shift in sensor inductance. To obtain the largest inductance shift requires maximizing the eddy currents on the target subject to the constraints of the system design. Using the techniques discussed here, matching the shape and size of the target to the sensor, using targets with the highest possible conductivity, and ensuring that the target thickness is sufficient to support at least 3 skin depths, will maximize the sensor response to provide the highest possible measurement resolution.