SLLA602 March   2024 LM5110 , LM5111 , TPS2811 , TPS2811-Q1 , TPS2812 , TPS2813 , TPS2814 , TPS2815 , UCC27323 , UCC27324 , UCC27324-Q1 , UCC27325 , UCC27423 , UCC27423-EP , UCC27423-Q1 , UCC27424 , UCC27424-EP , UCC27424-Q1 , UCC27425 , UCC27425-Q1 , UCC27444 , UCC27444-Q1 , UCC27523 , UCC27524 , UCC27524A , UCC27524A-Q1 , UCC27524A1-Q1 , UCC27525 , UCC27526 , UCC27527 , UCC27528 , UCC27528-Q1 , UCC27624 , UCC27624-Q1 , UCC37323 , UCC37324 , UCC37325 , UCD7201

 

  1.   1
  2.   Abstract
  3.   Trademarks
  4. 1Introduction
  5. 2How a Gate Drive Transformer Works
  6. 3Benefits of a Gate Drive Transformer
  7. 4Design Considerations of a Gate Drive Transformer
    1. 4.1 Duty Cycle Limitation
    2. 4.2 Transients and Noise
    3. 4.3 Calculations
    4. 4.4 Power Loss Calculations
    5. 4.5 Bias Supply Thermal Calculation
  8. 5Summary
  9. 6References

Abstract

There are several different options available to drive the gates of high-voltage power switches used in a variety of applications such as HEV/EV DC/DC converters and server PSU 400V to 48V DC/DC converters. One option is to use a transformer-coupled gate drive design using a non-isolated gate driver such as UCC27624 and a discrete transformer.

A gate drive transformer brings some benefits compared to alternatives. However, there are unique design considerations that are important to understand when implementing a gate drive transformer. This document covers the system-level benefits to transformer coupled gate drive, as well as the design considerations required to implement them.