TLE2074AM

ACTIVE

Military-grade, quad, 38-V, 10-MHz, 40-V/μs slew rate, 2-mV offset voltage, JFET-input op amp

A newer version of this product is available

open-in-new Compare alternates
Pin-for-pin with same functionality to the compared device
LM124M ACTIVE Military-grade, quad, 30-V, 1.2-MHz operational amplifier with -55°C to 125°C operation High GBW (1.2 MHz), low power (0.175 mA), low noise (35 nV/√Hz), high output current (40 mA)
LM148QML ACTIVE Military-grade, quad, 36-V, 900-kHz operational amplifier Low power (0.6 mA)

Product details

Number of channels 4 Total supply voltage (+5 V = 5, ±5 V = 10) (max) (V) 38 Total supply voltage (+5 V = 5, ±5 V = 10) (min) (V) 4.5 Rail-to-rail In to V+ GBW (typ) (MHz) 10 Slew rate (typ) (V/µs) 40 Vos (offset voltage at 25°C) (max) (mV) 3.5 Iq per channel (typ) (mA) 1.625 Vn at 1 kHz (typ) (nV√Hz) 12 Rating Military Operating temperature range (°C) -55 to 125 Offset drift (typ) (µV/°C) 10.1 Input bias current (max) (pA) 175 CMRR (typ) (dB) 98 Iout (typ) (A) 0.03 Architecture FET Input common mode headroom (to negative supply) (typ) (V) 3.1 Input common mode headroom (to positive supply) (typ) (V) 0 Output swing headroom (to negative supply) (typ) (V) 0.8 Output swing headroom (to positive supply) (typ) (V) -0.9
Number of channels 4 Total supply voltage (+5 V = 5, ±5 V = 10) (max) (V) 38 Total supply voltage (+5 V = 5, ±5 V = 10) (min) (V) 4.5 Rail-to-rail In to V+ GBW (typ) (MHz) 10 Slew rate (typ) (V/µs) 40 Vos (offset voltage at 25°C) (max) (mV) 3.5 Iq per channel (typ) (mA) 1.625 Vn at 1 kHz (typ) (nV√Hz) 12 Rating Military Operating temperature range (°C) -55 to 125 Offset drift (typ) (µV/°C) 10.1 Input bias current (max) (pA) 175 CMRR (typ) (dB) 98 Iout (typ) (A) 0.03 Architecture FET Input common mode headroom (to negative supply) (typ) (V) 3.1 Input common mode headroom (to positive supply) (typ) (V) 0 Output swing headroom (to negative supply) (typ) (V) 0.8 Output swing headroom (to positive supply) (typ) (V) -0.9
CDIP (J) 14 130.4652 mm² 19.56 x 6.67 CFP (W) 14 58.023 mm² 9.21 x 6.3 LCCC (FK) 20 79.0321 mm² 8.89 x 8.89
  • Direct Upgrades to TL05x, TL07x, and
    TL08x BiFET Operational Amplifiers
  • Greater Than 2× Bandwidth (10 MHz) and
    3× Slew Rate (45 V/µs) Than TL07x
  • Ensured Maximum Noise Floor 17 nV/Hz
  • On-Chip Offset Voltage Trimming for
    Improved DC Performance
  • Wider Supply Rails Increase Dynamic
    Signal Range to ±19 V

  • Direct Upgrades to TL05x, TL07x, and
    TL08x BiFET Operational Amplifiers
  • Greater Than 2× Bandwidth (10 MHz) and
    3× Slew Rate (45 V/µs) Than TL07x
  • Ensured Maximum Noise Floor 17 nV/Hz
  • On-Chip Offset Voltage Trimming for
    Improved DC Performance
  • Wider Supply Rails Increase Dynamic
    Signal Range to ±19 V

The TLE207x series of JFET-input operational amplifiers more than double the bandwidth and triple the slew rate of the TL07x and TL08x families of BiFET operational amplifiers. Texas Instruments Excalibur process yields a typical noise floor of 11.6 nV/Hz, 17-nV/Hz ensured maximum, offering immediate improvement in noise-sensitive circuits designed using the TL07x. The TLE207x also has wider supply voltage rails, increasing the dynamic signal range for BiFET circuits to ±19 V. On-chip zener trimming of offset voltage yields precision grades for greater accuracy in dc-coupled applications. The TLE207x are pin-compatible with lower performance BiFET operational amplifiers for ease in improving performance in existing designs.

BiFET operational amplifiers offer the inherently higher input impedance of the JFET-input transistors, without sacrificing the output drive associated with bipolar amplifiers. This makes them better suited for interfacing with high-impedance sensors or very low-level ac signals. They also feature inherently better ac response than bipolar or CMOS devices having comparable power consumption.

The TLE207x family of BiFET amplifiers are Texas Instruments highest performance BiFETs, with tighter input offset voltage and ensured maximum noise specifications. Designers requiring less stringent specifications but seeking the improved ac characteristics of the TLE207x should consider the TLE208x operational amplifier family.

Because BiFET operational amplifiers are designed for use with dual power supplies, care must be taken to observe common-mode input voltage limits and output swing when operating from a single supply. DC biasing of the input signal is required and loads should be terminated to a virtual ground node at mid-supply. Texas Instruments TLE2426 integrated virtual ground generator is useful when operating BiFET amplifiers from single supplies.

The TLE207x are fully specified at ±15 V and ±5 V. For operation in low-voltage and/or single-supply systems, Texas Instruments LinCMOS families of operational amplifiers (TLC- and TLV-prefix) are recommended. When moving from BiFET to CMOS amplifiers, particular attention should be paid to slew rate and bandwidth requirements and output loading.

The TLE207x series of JFET-input operational amplifiers more than double the bandwidth and triple the slew rate of the TL07x and TL08x families of BiFET operational amplifiers. Texas Instruments Excalibur process yields a typical noise floor of 11.6 nV/Hz, 17-nV/Hz ensured maximum, offering immediate improvement in noise-sensitive circuits designed using the TL07x. The TLE207x also has wider supply voltage rails, increasing the dynamic signal range for BiFET circuits to ±19 V. On-chip zener trimming of offset voltage yields precision grades for greater accuracy in dc-coupled applications. The TLE207x are pin-compatible with lower performance BiFET operational amplifiers for ease in improving performance in existing designs.

BiFET operational amplifiers offer the inherently higher input impedance of the JFET-input transistors, without sacrificing the output drive associated with bipolar amplifiers. This makes them better suited for interfacing with high-impedance sensors or very low-level ac signals. They also feature inherently better ac response than bipolar or CMOS devices having comparable power consumption.

The TLE207x family of BiFET amplifiers are Texas Instruments highest performance BiFETs, with tighter input offset voltage and ensured maximum noise specifications. Designers requiring less stringent specifications but seeking the improved ac characteristics of the TLE207x should consider the TLE208x operational amplifier family.

Because BiFET operational amplifiers are designed for use with dual power supplies, care must be taken to observe common-mode input voltage limits and output swing when operating from a single supply. DC biasing of the input signal is required and loads should be terminated to a virtual ground node at mid-supply. Texas Instruments TLE2426 integrated virtual ground generator is useful when operating BiFET amplifiers from single supplies.

The TLE207x are fully specified at ±15 V and ±5 V. For operation in low-voltage and/or single-supply systems, Texas Instruments LinCMOS families of operational amplifiers (TLC- and TLV-prefix) are recommended. When moving from BiFET to CMOS amplifiers, particular attention should be paid to slew rate and bandwidth requirements and output loading.

Download View video with transcript Video

Technical documentation

star =Top documentation for this product selected by TI
No results found. Please clear your search and try again.
View all 4
Type Title Date
* Data sheet TLE207x, TLE207xA: Excalibur Low-Noise High-Speed JFET-Input Op Amps datasheet (Rev. C) 09 Dec 2009
* SMD TLE2074AM SMD 5962-94602 21 Jun 2016
E-book The Signal e-book: A compendium of blog posts on op amp design topics 28 Mar 2017
Application note TLE2071, TLE2072, TLE2074 EMI Immunity Performance 31 Dec 2013

Design & development

For additional terms or required resources, click any title below to view the detail page where available.

Calculation tool

ANALOG-ENGINEER-CALC — Analog engineer's calculator

The analog engineer’s calculator is designed to speed up many of the repetitive calculations that analog circuit design engineers use on a regular basis. This PC-based tool provides a graphical interface with a list of various common calculations ranging from setting operational-amplifier (...)
Design tool

CIRCUIT060013 — Inverting amplifier with T-network feedback circuit

This design inverts the input signal, VIN, and applies a signal gain of 1000 V/V or 60 dB. The inverting amplifier with T-feedback network can be used to obtain a high gain without a small value for R4 or very large values for the feedback resistors.
Design tool

CIRCUIT060015 — Adjustable reference voltage circuit

This circuit combines an inverting and non-inverting amplifier to make a reference voltage adjustable from the negative of the input voltage up to the input voltage. Gain can be added to increase the maximum negative reference level.
Design tool

CIRCUIT060074 — High-side current sensing with comparator circuit

This high-side, current sensing solution uses one comparator with a rail-to-rail input common mode range to create an over-current alert (OC-Alert) signal at the comparator output (COMP OUT) if the load current rises above 1 A. The OC-Alert signal in this implementation is active low. So when the (...)
Simulation tool

PSPICE-FOR-TI — PSpice® for TI design and simulation tool

PSpice® for TI is a design and simulation environment that helps evaluate functionality of analog circuits. This full-featured, design and simulation suite uses an analog analysis engine from Cadence®. Available at no cost, PSpice for TI includes one of the largest model libraries in the (...)
Simulation tool

TINA-TI — SPICE-based analog simulation program

TINA-TI provides all the conventional DC, transient and frequency domain analysis of SPICE and much more. TINA has extensive post-processing capability that allows you to format results the way you want them. Virtual instruments allow you to select input waveforms and probe circuit nodes voltages (...)
User guide: PDF
Package Pins CAD symbols, footprints & 3D models
CDIP (J) 14 Ultra Librarian
CFP (W) 14 Ultra Librarian
LCCC (FK) 20 Ultra Librarian

Ordering & quality

Information included:
  • RoHS
  • REACH
  • Device marking
  • Lead finish/Ball material
  • MSL rating/Peak reflow
  • MTBF/FIT estimates
  • Material content
  • Qualification summary
  • Ongoing reliability monitoring
Information included:
  • Fab location
  • Assembly location

Support & training

TI E2E™ forums with technical support from TI engineers

Content is provided "as is" by TI and community contributors and does not constitute TI specifications. See terms of use.

If you have questions about quality, packaging or ordering TI products, see TI support. ​​​​​​​​​​​​​​

Videos