The SN74CB3T16212 is a high-speed TTL-compatible FET bus-exchange switch, with low ON-state resistance (ron), allowing for minimal propagation delay. The device fully supports mixed-mode signal operation on all data I/O ports by providing voltage translation that tracks VCC. The SN74CB3T16212 supports systems using 5-V TTL, 3.3-V LVTTL, and 2.5-V CMOS switching standards, as well as user-defined switching levels (see Figure 1).
The SN74CB3T16212 operates as a 24-bit bus switch or as a 12-bit bus exchange that provides data exchanging between four signal ports. The select (S0, S1, S2) inputs control the data path of the bus-exchange switch. When the bus-exchange switch is ON, the A port is connected to the B port, allowing bidirectional data flow between ports. When the bus-exchange switch is OFF, a high-impedance state exists between the A and B ports.
This device is fully specified for partial-power-down applications using Ioff. The Ioff feature ensures that damaging current will not backflow through the device when it is powered down. The device has isolation during power off.
To ensure the high-impedance state during power up or power down, each select input should be tied to GND through a pulldown resistor; the minimum value of the resistor is determined by the current-sourcing capability of the driver.
The SN74CB3T16212 is a high-speed TTL-compatible FET bus-exchange switch, with low ON-state resistance (ron), allowing for minimal propagation delay. The device fully supports mixed-mode signal operation on all data I/O ports by providing voltage translation that tracks VCC. The SN74CB3T16212 supports systems using 5-V TTL, 3.3-V LVTTL, and 2.5-V CMOS switching standards, as well as user-defined switching levels (see Figure 1).
The SN74CB3T16212 operates as a 24-bit bus switch or as a 12-bit bus exchange that provides data exchanging between four signal ports. The select (S0, S1, S2) inputs control the data path of the bus-exchange switch. When the bus-exchange switch is ON, the A port is connected to the B port, allowing bidirectional data flow between ports. When the bus-exchange switch is OFF, a high-impedance state exists between the A and B ports.
This device is fully specified for partial-power-down applications using Ioff. The Ioff feature ensures that damaging current will not backflow through the device when it is powered down. The device has isolation during power off.
To ensure the high-impedance state during power up or power down, each select input should be tied to GND through a pulldown resistor; the minimum value of the resistor is determined by the current-sourcing capability of the driver.