產品詳細資料

Configuration Universal Bits (#) 4 Technology family HC Supply voltage (min) (V) 2 Supply voltage (max) (V) 6 Input type Standard CMOS Output type Push-Pull Clock frequency (MHz) 60 IOL (max) (mA) 5.2 IOH (max) (mA) -5.2 Supply current (max) (µA) 160 Features Balanced outputs, High speed (tpd 10-50ns), Positive input clamp diode Operating temperature range (°C) -55 to 125 Rating Catalog
Configuration Universal Bits (#) 4 Technology family HC Supply voltage (min) (V) 2 Supply voltage (max) (V) 6 Input type Standard CMOS Output type Push-Pull Clock frequency (MHz) 60 IOL (max) (mA) 5.2 IOH (max) (mA) -5.2 Supply current (max) (µA) 160 Features Balanced outputs, High speed (tpd 10-50ns), Positive input clamp diode Operating temperature range (°C) -55 to 125 Rating Catalog
PDIP (N) 16 181.42 mm² 19.3 x 9.4 SOIC (D) 16 59.4 mm² 9.9 x 6 SOP (NS) 16 79.56 mm² 10.2 x 7.8 TSSOP (PW) 16 32 mm² 5 x 6.4
  • Asynchronous Master Reset
  • J, K\,(D) Inputs to First Stage
  • Fully Synchronous Serial or Parallel Data Transfer
  • Shift Right and Parallel Load Capability
  • Complementary Output From Last Stage
  • Buffered Inputs
  • Typical fMAX = 50MHz at VCC = 5V, CL = 15pF, TA = 25°C
  • Fanout (Over Temperature Range)
    • Standard Outputs . . . . 10 LSTTL Loads
    • Bus Driver Outputs . . . . 15 LSTTL Loads
  • Wide Operating Temperature Range . . . –55°C to 125°C
  • Balanced Propagation Delay and Transition Times
  • Significant Power Reduction Compared to LSTTL Logic ICs
  • HC Types
    • 2V to 6V Operation
    • High Noise Immunity: NIL = 30%, NIH = 30%of VCC at VCC = 5V

Data sheet acquired from Harris Semiconductor

  • Asynchronous Master Reset
  • J, K\,(D) Inputs to First Stage
  • Fully Synchronous Serial or Parallel Data Transfer
  • Shift Right and Parallel Load Capability
  • Complementary Output From Last Stage
  • Buffered Inputs
  • Typical fMAX = 50MHz at VCC = 5V, CL = 15pF, TA = 25°C
  • Fanout (Over Temperature Range)
    • Standard Outputs . . . . 10 LSTTL Loads
    • Bus Driver Outputs . . . . 15 LSTTL Loads
  • Wide Operating Temperature Range . . . –55°C to 125°C
  • Balanced Propagation Delay and Transition Times
  • Significant Power Reduction Compared to LSTTL Logic ICs
  • HC Types
    • 2V to 6V Operation
    • High Noise Immunity: NIL = 30%, NIH = 30%of VCC at VCC = 5V

Data sheet acquired from Harris Semiconductor

The device is useful in a wide variety of shifting, counting and storage applications. It performs serial, parallel, serial to parallel, or parallel to serial data transfers at very high speeds.

The two modes of operation, shift right (Q0-Q1) and parallel load, are controlled by the state of the Parallel Enable (PE)\ input. Serial data enters the first flip-flop (Q0) via the J and K\ inputs when the PE\ input is high, and is shifted one bit in the direction Q0-Q1-Q2-Q3 following each Low to High clock transition. The J and K\ inputs provide the flexibility of the JK-type input for special applications and by tying the two pins together, the simple D-type input for general applications. The device appears as four common-clocked D flip-flops when the PE\ input is Low. After the Low to High clock transition, data on the parallel inputs (D0-D3) is transferred to the respective Q0-Q3 outputs. Shift left operation (Q3-Q2) can be achieved by tying the Qn outputs to the Dn-1 inputs and holding the PE\ input low.

All parallel and serial data transfers are synchronous, occurring after each Low to High clock transition. The ’HC195 series utilizes edge triggering; therefore, there is no restriction on the activity of the J, K\, Pn and PE\ inputs for logic operations, other than set-up and hold time requirements. A Low on the asynchronous Master Reset (MR)\ input sets all Q outputs Low, independent of any other input condition.

The device is useful in a wide variety of shifting, counting and storage applications. It performs serial, parallel, serial to parallel, or parallel to serial data transfers at very high speeds.

The two modes of operation, shift right (Q0-Q1) and parallel load, are controlled by the state of the Parallel Enable (PE)\ input. Serial data enters the first flip-flop (Q0) via the J and K\ inputs when the PE\ input is high, and is shifted one bit in the direction Q0-Q1-Q2-Q3 following each Low to High clock transition. The J and K\ inputs provide the flexibility of the JK-type input for special applications and by tying the two pins together, the simple D-type input for general applications. The device appears as four common-clocked D flip-flops when the PE\ input is Low. After the Low to High clock transition, data on the parallel inputs (D0-D3) is transferred to the respective Q0-Q3 outputs. Shift left operation (Q3-Q2) can be achieved by tying the Qn outputs to the Dn-1 inputs and holding the PE\ input low.

All parallel and serial data transfers are synchronous, occurring after each Low to High clock transition. The ’HC195 series utilizes edge triggering; therefore, there is no restriction on the activity of the J, K\, Pn and PE\ inputs for logic operations, other than set-up and hold time requirements. A Low on the asynchronous Master Reset (MR)\ input sets all Q outputs Low, independent of any other input condition.

下載

您可能會感興趣的類似產品

open-in-new 比較替代產品
功能與所比較的裝置相似
SN74HC595 現行 具有 3 態輸出暫存器的 8 位元移位暫存器 Voltage range (2V to 6V), average drive strength (8mA), average propagation delay (20ns)

技術文件

star =TI 所選的此產品重要文件
找不到結果。請清除您的搜尋條件,然後再試一次。
檢視所有 1
類型 標題 日期
* Data sheet CD54HC195, CD74HC195 datasheet (Rev. E) 2003年 10月 21日

訂購與品質

內含資訊:
  • RoHS
  • REACH
  • 產品標記
  • 鉛塗層/球物料
  • MSL 等級/回焊峰值
  • MTBF/FIT 估算值
  • 材料內容
  • 認證摘要
  • 進行中持續性的可靠性監測
內含資訊:
  • 晶圓廠位置
  • 組裝地點

支援與培訓

內含 TI 工程師技術支援的 TI E2E™ 論壇

內容係由 TI 和社群貢獻者依「現狀」提供,且不構成 TI 規範。檢視使用條款

若有關於品質、封裝或訂購 TI 產品的問題,請參閱 TI 支援。​​​​​​​​​​​​​​