DAC5674
- 200-MSPS Maximum Input Data Rate
- 400-MSPS Maximum Update Rate DAC
- 76-dBc SFDR Over Full First Nyquist Zone With Single Tone Input Signal (Fout = 21 MHz)
- 74-dBc ACPR W-CDMA at 15.36 MHz IF
- 69-dBc ACPR W-CDMA at 30.72 MHz IF
- Selectable 2x or 4x Interpolation Filter
- Linear Phase
- 0.05-dB Passband Ripple
- 80-dB Stopband Attenuation
- Stopband Transition 0.4-0.6 Fdata
- Interpolation Filters Configurable in Either Low-Pass or High-Pass Mode, Allows For Selection Higher Order Image
- On-chip 2x/4x PLL Clock Multiplier, PLL Bypass Mode
- Differential Scalable Current Outputs: 2 mA to 20 mA
- On-Chip 1.2-V Reference
- 1.8-V Digital and 3.3-V Analog Supply Operation
- 1.8/3.3-V CMOS Compatible Interface
- Power Dissipation: 435 mW at 400 MSPS
- Package: 48-Pin TQFP
- APPLICATIONS
- Cellular Base Transceiver Station Transmit Channel
- CDMA: W-CDMA, CDMA2000, IS-95
- TDMA: GSM, IS-136, EDGE/UWC-136
- Test and Measurement: Arbitrary Waveform Generation
- Direct Digital Synthesis (DDS)
- Cable Modem Termination System
- Cellular Base Transceiver Station Transmit Channel
Excel is a trademark of Microsoft Corporation.
CommsDAC and PowerPAD are trademarks of Texas Instruments.
All other trademarks are the property of their respective owners.
The DAC5674 is a 14-bit resolution high-speed digital-to-analog converter (DAC) with integrated 4x-interpolation filter, on-board clock multiplier, and on-chip voltage reference. The device has been designed for high-speed digital data transmission in wired and wireless communication systems, high-frequency direct-digital synthesis (DDS) and waveform reconstruction in test and measurement applications.
The 4x-interpolation filter is implemented as a cascade of two 2x-interpolation filters, each of which can be configured for either low-pass or high-pass response. This enables the user to select one of the higher order images present at multiples of the input data rate clock while maintaining a low date input rate. The resulting high IF output frequency allows the user to omit the conventional first mixer in heterodyne transmitter architectures and directly up-convert to RF using only one mixer, thereby reducing system complexity and costs.
In 4x-interpolation low-pass response mode, the DACs excellent spurious free dynamic range (SFDR) at intermediate frequencies located in the first Nyquist zone (up to 40 MHz) allows for multicarrier transmission in cellular base transceiver stations (BTS). The low-pass interpolation mode thereby relaxes image filter requirements by filtering out the images in the adjacent Nyquist zones.
The DAC5674 PLL clock multiplier controls all internal clocks for the digital filters and DAC core. The differential clock input and internal clock circuitry provides for optimum jitter performance. Sine wave clock input signal is supported. The PLL can be bypassed by an external clock running at the DAC core update rate. The clock divider of the PLL ensures that the digital filters operate at the correct clock frequencies.
The DAC5674 operates from an analog supply voltage of 3.3 V and a digital supply voltage of 1.8 V. The digital I/Os are 1.8-V and 3.3-V CMOS compatible. Power dissipation is 500 mW at maximum operating conditions. The DAC5674 provides a nominal full-scale differential current-output of 20 mA, supporting both single-ended and differential applications. The output current can be directly fed to the load with no additional external output buffer required. The device has been specifically designed for a differential transformer coupled output with a 50- doubly terminated load. For a 20-mA full-scale output current both a 4:1 impedance ratio (resulting in an output power of 4 dBm) and 1:1 impedance ratio transformer (2-dBm output power) are supported. The latter configuration is preferred for optimum performance at high output frequencies and update rates.
An accurate on-chip 1.2-V temperature compensated bandgap reference and control amplifier allows the user to adjust the full-scale output current from 20 mA down to 2 mA. This provides 20-dB gain range control capabilities. Alternatively, an external reference voltage may be applied for maximum flexibility. The device features a SLEEP mode, which reduces the standby power to approximately 10 mW, thereby optimizing the power consumption for the systems need.
The DAC5674 is available in a 48-pin HTQFP Powerpad plastic quad flatpack package. The device is characterized for operation over the industrial temperature range of 40°C to 85°C.
技術文件
類型 | 標題 | 日期 | ||
---|---|---|---|---|
* | Data sheet | 14-Bit 400 MSPS 2x/4x Interpolating CommsDAC DAC datasheet (Rev. A) | 2005年 10月 4日 | |
Analog Design Journal | Q4 2009 Issue Analog Applications Journal | 2018年 9月 24日 | ||
Application note | Wideband Complementary Current Output DAC Single-Ended Interface (Rev. A) | 2015年 5月 8日 | ||
Analog Design Journal | Interfacing op amps to high-speed DACs, Part 2: Current-sourcing DACs | 2009年 10月 4日 | ||
Application note | Passive Terminations for Current Output DACs | 2008年 11月 10日 | ||
Application note | CDCE72010 as a Clocking Solution for High-Speed Analog-to-Digital Converters | 2008年 6月 8日 | ||
Application note | Phase Noise Performance and Jitter Cleaning Ability of CDCE72010 | 2008年 6月 2日 | ||
EVM User's guide | DAC5674EVM | 2002年 5月 29日 |
設計與開發
如需其他條款或必要資源,請按一下下方的任何標題以檢視詳細頁面 (如有)。
DAC5674EVM — DAC5674 14 位元、400-MSPS、2x-4x 內插數位轉類比轉換器評估模組
DAC5674 is an evaluation module for DAC5674, a 400 MSPS digital to analog converter with 2x/4x interpolation. This evaluation module is designed to enable you to evaluate the device under various modes of operation.
MATCHGAIN-CALC — 寬頻補償電流輸出 DAC 至 SE 介面:改善增益和合規電壓擺幅的匹配
- Click on "abstract" to view abstract of document.
- Open the ZIP file to extract the calculator tool.
- Open the PDF file to view the application note.
High-speed digital-to-analog converters (DACs) most often use a (...)
PSPICE-FOR-TI — PSpice® for TI 設計與模擬工具
封裝 | 針腳 | CAD 符號、佔位空間與 3D 模型 |
---|---|---|
HTQFP (PHP) | 48 | Ultra Librarian |
訂購與品質
- RoHS
- REACH
- 產品標記
- 鉛塗層/球物料
- MSL 等級/回焊峰值
- MTBF/FIT 估算值
- 材料內容
- 認證摘要
- 進行中持續性的可靠性監測
- 晶圓廠位置
- 組裝地點
建議產品可能具有與此 TI 產品相關的參數、評估模組或參考設計。