產品詳細資料

Function Counter Bits (#) 8 Technology family AS Supply voltage (min) (V) 4.5 Supply voltage (max) (V) 5.5 Input type Bipolar Output type Push-Pull Features Very high speed (tpd 5-10ns) Operating temperature range (°C) -55 to 125 Rating Military
Function Counter Bits (#) 8 Technology family AS Supply voltage (min) (V) 4.5 Supply voltage (max) (V) 5.5 Input type Bipolar Output type Push-Pull Features Very high speed (tpd 5-10ns) Operating temperature range (°C) -55 to 125 Rating Military
CDIP (JT) 24 221.44 mm² 32 x 6.92
  • Fully Programmable With Synchronous Counting and Loading
  • SN74ALS867A and ´AS867 Have Asynchronous Clear; SN74ALS869 and ´AS869 Have Synchronous Clear
  • Fully Independent Clock Circuit Simplifies Use
  • Ripple-Carry Output for n-Bit Cascading
  • Package Options Include Plastic Small-Outline (DW) Packages, Ceramic Chip Carriers (FK), and Standard Plastic (NT) and Ceramic (JT) 300-mil DIPs

 

  • Fully Programmable With Synchronous Counting and Loading
  • SN74ALS867A and ´AS867 Have Asynchronous Clear; SN74ALS869 and ´AS869 Have Synchronous Clear
  • Fully Independent Clock Circuit Simplifies Use
  • Ripple-Carry Output for n-Bit Cascading
  • Package Options Include Plastic Small-Outline (DW) Packages, Ceramic Chip Carriers (FK), and Standard Plastic (NT) and Ceramic (JT) 300-mil DIPs

 

These synchronous, presettable, 8-bit up/down counters feature internal-carry look-ahead circuitry for cascading in high-speed counting applications. Synchronous operation is provided by having all flip-flops clocked simultaneously so that the outputs change coincidentally with each other when so instructed by the count-enable (,) inputs and internal gating. This mode of operation eliminates the output counting spikes normally associated with asynchronous (ripple-clock) counters. A buffered clock (CLK) input triggers the eight flip-flops on the rising (positive-going) edge of the clock waveform.

These counters are fully programmable; they may be preset to any number between 0 and 255. The load-input circuitry allows parallel loading of the cascaded counters. Because loading is synchronous, selecting the load mode disables the counter and causes the outputs to agree with the data inputs after the next clock pulse.

The carry look-ahead circuitry provides for cascading counters for n-bit synchronous applications without additional gating. Two count-enable (and ) inputs and a ripple-carry () output are instrumental in accomplishing this function. Both and must be low to count. The direction of the count is determined by the levels of the select (S0, S1) inputs as shown in the function table. is fed forward to enable . thus enabled produces a low-level pulse while the count is zero (all outputs low) counting down or 255 counting up (all outputs high). This low-level overflow-carry pulse can be used to enable successive cascaded stages. Transitions at and are allowed regardless of the level of CLK. All inputs are diode clamped to minimize transmission-line effects, thereby simplifying system design.

These counters feature a fully independent clock circuit. With the exception of the asynchronous clear on the SN74ALS867A and ´AS867, changes at S0 and S1 that modify the operating mode have no effect on the Q outputs until clocking occurs. For the ´AS867 and ´AS869, any time ENP\ and/or ENT\ is taken high, either goes or remains high. For the SN74ALS867A and SN74ALS869, any time is taken high, either goes or remains high. The function of the counter (whether enabled, disabled, loading, or counting) is dictated solely by the conditions meeting the stable setup and hold times.

 

The SN54AS867 and SN54AS869 are characterized for operation over the full military temperature range of -55°C to 125°C. The SN74ALS867A, SN74ALS869, SN74AS867, and SN74AS869 are characterized for operation from 0°C to 70°C.

 

 

These synchronous, presettable, 8-bit up/down counters feature internal-carry look-ahead circuitry for cascading in high-speed counting applications. Synchronous operation is provided by having all flip-flops clocked simultaneously so that the outputs change coincidentally with each other when so instructed by the count-enable (,) inputs and internal gating. This mode of operation eliminates the output counting spikes normally associated with asynchronous (ripple-clock) counters. A buffered clock (CLK) input triggers the eight flip-flops on the rising (positive-going) edge of the clock waveform.

These counters are fully programmable; they may be preset to any number between 0 and 255. The load-input circuitry allows parallel loading of the cascaded counters. Because loading is synchronous, selecting the load mode disables the counter and causes the outputs to agree with the data inputs after the next clock pulse.

The carry look-ahead circuitry provides for cascading counters for n-bit synchronous applications without additional gating. Two count-enable (and ) inputs and a ripple-carry () output are instrumental in accomplishing this function. Both and must be low to count. The direction of the count is determined by the levels of the select (S0, S1) inputs as shown in the function table. is fed forward to enable . thus enabled produces a low-level pulse while the count is zero (all outputs low) counting down or 255 counting up (all outputs high). This low-level overflow-carry pulse can be used to enable successive cascaded stages. Transitions at and are allowed regardless of the level of CLK. All inputs are diode clamped to minimize transmission-line effects, thereby simplifying system design.

These counters feature a fully independent clock circuit. With the exception of the asynchronous clear on the SN74ALS867A and ´AS867, changes at S0 and S1 that modify the operating mode have no effect on the Q outputs until clocking occurs. For the ´AS867 and ´AS869, any time ENP\ and/or ENT\ is taken high, either goes or remains high. For the SN74ALS867A and SN74ALS869, any time is taken high, either goes or remains high. The function of the counter (whether enabled, disabled, loading, or counting) is dictated solely by the conditions meeting the stable setup and hold times.

 

The SN54AS867 and SN54AS869 are characterized for operation over the full military temperature range of -55°C to 125°C. The SN74ALS867A, SN74ALS869, SN74AS867, and SN74AS869 are characterized for operation from 0°C to 70°C.

 

 

下載 觀看有字幕稿的影片 影片

技術文件

star =TI 所選的此產品重要文件
找不到結果。請清除您的搜尋條件,然後再試一次。
檢視所有 12
類型 標題 日期
* Data sheet Synchronous 8-Bit Up/Down Counters datasheet (Rev. C) 1995年 1月 1日
* SMD SN54AS867 SMD 5962-89668 2016年 6月 21日
Selection guide Logic Guide (Rev. AB) 2017年 6月 12日
Application note Understanding and Interpreting Standard-Logic Data Sheets (Rev. C) 2015年 12月 2日
User guide LOGIC Pocket Data Book (Rev. B) 2007年 1月 16日
Application note Semiconductor Packing Material Electrostatic Discharge (ESD) Protection 2004年 7月 8日
Application note TI IBIS File Creation, Validation, and Distribution Processes 2002年 8月 29日
Application note Designing With Logic (Rev. C) 1997年 6月 1日
Application note Advanced Schottky Load Management 1997年 2月 1日
Application note Input and Output Characteristics of Digital Integrated Circuits 1996年 10月 1日
Application note Live Insertion 1996年 10月 1日
Application note Advanced Schottky (ALS and AS) Logic Families 1995年 8月 1日

設計與開發

如需其他條款或必要資源,請按一下下方的任何標題以檢視詳細頁面 (如有)。

封裝 針腳 CAD 符號、佔位空間與 3D 模型
CDIP (JT) 24 Ultra Librarian

訂購與品質

內含資訊:
  • RoHS
  • REACH
  • 產品標記
  • 鉛塗層/球物料
  • MSL 等級/回焊峰值
  • MTBF/FIT 估算值
  • 材料內容
  • 認證摘要
  • 進行中持續性的可靠性監測
內含資訊:
  • 晶圓廠位置
  • 組裝地點

支援與培訓

內含 TI 工程師技術支援的 TI E2E™ 論壇

內容係由 TI 和社群貢獻者依「現狀」提供,且不構成 TI 規範。檢視使用條款

若有關於品質、封裝或訂購 TI 產品的問題,請參閱 TI 支援。​​​​​​​​​​​​​​

影片