產品詳細資料

Function Counter Bits (#) 4 Technology family ALS Supply voltage (min) (V) 4.5 Supply voltage (max) (V) 5.5 Input type Bipolar Output type Push-Pull Features High speed (tpd 10-50ns) Operating temperature range (°C) 0 to 70 Rating Catalog
Function Counter Bits (#) 4 Technology family ALS Supply voltage (min) (V) 4.5 Supply voltage (max) (V) 5.5 Input type Bipolar Output type Push-Pull Features High speed (tpd 10-50ns) Operating temperature range (°C) 0 to 70 Rating Catalog
PDIP (N) 16 181.42 mm² 19.3 x 9.4 SOIC (D) 16 59.4 mm² 9.9 x 6 SOP (NS) 16 79.56 mm² 10.2 x 7.8
  • Internal Look-Ahead Circuitry for Fast Counting
  • Carry Output for n-Bit Cascading
  • Synchronous Counting
  • Synchronously Programmable
  • Package Options Include Plastic Small-Outline (D) and Shrink Small-Outline (DB) Packages, Ceramic Chip Carriers (FK), Standard Plastic (N) and Ceramic (J) DIPs
  • Internal Look-Ahead Circuitry for Fast Counting
  • Carry Output for n-Bit Cascading
  • Synchronous Counting
  • Synchronously Programmable
  • Package Options Include Plastic Small-Outline (D) and Shrink Small-Outline (DB) Packages, Ceramic Chip Carriers (FK), Standard Plastic (N) and Ceramic (J) DIPs

These synchronous, presettable, 4-bit decade and binary counters feature an internal carry look-ahead circuitry for application in high-speed counting designs. The SN54ALS162B is a 4-bit decade counter. The \x92ALS161B, \x92ALS163B, \x92AS161, and \x92AS163 devices are 4-bit binary counters. Synchronous operation is provided by having all flip-flops clocked simultaneously so that the outputs change coincidentally with each other when instructed by the count-enable (ENP, ENT) inputs and internal gating. This mode of operation eliminates the output counting spikes normally associated with asynchronous (ripple-clock) counters. A buffered clock (CLK) input triggers the four flip-flops on the rising (positive-going) edge of the clock input waveform.

These counters are fully programmable; they can be preset to any number between 0 and 9 or 15. Because presetting is synchronous, setting up a low level at the load (LOAD\) input disables the counter and causes the outputs to agree with the setup data after the next clock pulse, regardless of the levels of the enable inputs.

The clear function for the \x92ALS161B and \x92AS161 devices is asynchronous. A low level at the clear (CLR\) input sets all four of the flip-flop outputs low, regardless of the levels of the CLK, LOAD\, or enable inputs. The clear function for the SN54ALS162B, \x92ALS163B, and \x92AS163 devices is synchronous, and a low level at CLR sets all four of the flip-flop outputs low after the next clock pulse, regardless of the levels of the enable inputs. This synchronous clear allows the count length to be modified easily by decoding the Q outputs for the maximum count desired. The active-low output of the gate used for decoding is connected to CLR\ to synchronously clear the counter to 0000 (LLLL).

The carry look-ahead circuitry provides for cascading counters for n-bit synchronous applications without additional gating. ENP and ENT inputs and a ripple-carry (RCO) output are instrumental in accomplishing this function. Both ENP and ENT must be high to count, and ENT is fed forward to enable RCO. RCO, thus enabled, produces a high-level pulse while the count is maximum (9 or 15, with QA high). The high-level overflow ripple-carry pulse can be used to enable successive cascaded stages. Transitions at ENP or ENT are allowed, regardless of the level of CLK.

These counters feature a fully independent clock circuit. Changes at control inputs (ENP, ENT, or LOAD\) that modify the operating mode have no effect on the contents of the counter until clocking occurs. The function of the counter (whether enabled, disabled, loading, or counting) is dictated solely by the conditions meeting the stable setup and hold times.

The SN54ALS161B, SN54ALS162B, SN54ALS163B, SN54AS161, and SN54AS163 are characterized for operation over the full military temperature range of \x9655°C to 125°C. The SN74ALS161B, SN74ALS163B, SN74AS161, and SN74AS163 are characterized for operation from 0°C to 70°C.

These synchronous, presettable, 4-bit decade and binary counters feature an internal carry look-ahead circuitry for application in high-speed counting designs. The SN54ALS162B is a 4-bit decade counter. The \x92ALS161B, \x92ALS163B, \x92AS161, and \x92AS163 devices are 4-bit binary counters. Synchronous operation is provided by having all flip-flops clocked simultaneously so that the outputs change coincidentally with each other when instructed by the count-enable (ENP, ENT) inputs and internal gating. This mode of operation eliminates the output counting spikes normally associated with asynchronous (ripple-clock) counters. A buffered clock (CLK) input triggers the four flip-flops on the rising (positive-going) edge of the clock input waveform.

These counters are fully programmable; they can be preset to any number between 0 and 9 or 15. Because presetting is synchronous, setting up a low level at the load (LOAD\) input disables the counter and causes the outputs to agree with the setup data after the next clock pulse, regardless of the levels of the enable inputs.

The clear function for the \x92ALS161B and \x92AS161 devices is asynchronous. A low level at the clear (CLR\) input sets all four of the flip-flop outputs low, regardless of the levels of the CLK, LOAD\, or enable inputs. The clear function for the SN54ALS162B, \x92ALS163B, and \x92AS163 devices is synchronous, and a low level at CLR sets all four of the flip-flop outputs low after the next clock pulse, regardless of the levels of the enable inputs. This synchronous clear allows the count length to be modified easily by decoding the Q outputs for the maximum count desired. The active-low output of the gate used for decoding is connected to CLR\ to synchronously clear the counter to 0000 (LLLL).

The carry look-ahead circuitry provides for cascading counters for n-bit synchronous applications without additional gating. ENP and ENT inputs and a ripple-carry (RCO) output are instrumental in accomplishing this function. Both ENP and ENT must be high to count, and ENT is fed forward to enable RCO. RCO, thus enabled, produces a high-level pulse while the count is maximum (9 or 15, with QA high). The high-level overflow ripple-carry pulse can be used to enable successive cascaded stages. Transitions at ENP or ENT are allowed, regardless of the level of CLK.

These counters feature a fully independent clock circuit. Changes at control inputs (ENP, ENT, or LOAD\) that modify the operating mode have no effect on the contents of the counter until clocking occurs. The function of the counter (whether enabled, disabled, loading, or counting) is dictated solely by the conditions meeting the stable setup and hold times.

The SN54ALS161B, SN54ALS162B, SN54ALS163B, SN54AS161, and SN54AS163 are characterized for operation over the full military temperature range of \x9655°C to 125°C. The SN74ALS161B, SN74ALS163B, SN74AS161, and SN74AS163 are characterized for operation from 0°C to 70°C.

下載

您可能會感興趣的類似產品

open-in-new 比較替代產品
可直接投入的替代產品,相較於所比較的裝置,具備升級功能
CD74ACT163 現行 具有同步重設功能的同步可預設二進位計數器 Higher average drive strength (24mA)
功能相同,但引腳輸出與所比較的裝置不同
SN74LV163A 現行 4 位元同步二進位計數器 Voltage range (2V to 5.5V), average drive strength (12mA), average propagation delay (9ns)

技術文件

star =TI 所選的此產品重要文件
找不到結果。請清除您的搜尋條件,然後再試一次。
檢視所有 1
類型 標題 日期
* Data sheet Synchronous 4-Bit Decade And Binary Counters datasheet (Rev. A) 2000年 7月 28日

訂購與品質

內含資訊:
  • RoHS
  • REACH
  • 產品標記
  • 鉛塗層/球物料
  • MSL 等級/回焊峰值
  • MTBF/FIT 估算值
  • 材料內容
  • 認證摘要
  • 進行中持續性的可靠性監測
內含資訊:
  • 晶圓廠位置
  • 組裝地點

支援與培訓

內含 TI 工程師技術支援的 TI E2E™ 論壇

內容係由 TI 和社群貢獻者依「現狀」提供,且不構成 TI 規範。檢視使用條款

若有關於品質、封裝或訂購 TI 產品的問題,請參閱 TI 支援。​​​​​​​​​​​​​​