SN74LV374A-EP
- Controlled Baseline
- One Assembly/Test Site, One Fabrication Site
- Extended Temperature Performance of –40°C to 105°C
- Enhanced Diminishing Manufacturing Sources (DMS) Support
- Enhanced Product-Change Notification
- Qualification Pedigree
- Typical VOLP (Output Ground Bounce)
<0.8 V at VCC = 3.3 V, TA = 25°C - Typical VOHV (Output VOH Undershoot)
>2.3 V at VCC = 3.3 V, TA = 25°C - Supports Mixed-Mode Voltage Operation on All Ports
- Ioff Supports Partial-Power-Down Mode Operation
- ESD Protection Exceeds JESD 22
- 2000-V Human-Body Model (A114-A)
- 200-V Machine Model (A115-A)
- 1000-V Charged-Device Model (C101)
Component qualification in accordance with JEDEC and industry standards to ensure reliable operation over an extended temperature range. This includes, but is not limited to, Highly Accelerated Stress Test (HAST) or biased 85/85, temperature cycle, autoclave or unbiased HAST, electromigration, bond intermetallic life, and mold compound life. Such qualification testing should not be viewed as justifying use of this component beyond specified performance and environmental limits.
The SN74LV374A is an octal edge-triggered D-type flip-flop designed for 2-V to 5.5-V VCC operation.
This device features 3-state outputs designed specifically for driving highly capacitive or relatively low-impedance loads. It is particularly suitable for implementing buffer registers, I/O ports, bidirectional bus drivers, and working registers.
On the positive transition of the clock (CLK) input, the Q outputs are set to the logic levels set up at the data (D) inputs.
A buffered output-enable (OE)\ input can be used to place the eight outputs in either a normal logic state (high or low logic levels) or high-impedance state. In the high-impedance state, the outputs neither load nor drive the bus lines significantly. The high-impedance state and the increased drive provide the capability to drive bus lines without need for interface or pullup components.
OE\ does not affect internal operations of the latch. Old data can be retained or new data can be entered while the outputs are in the high-impedance state.
To ensure the high-impedance state during power up or power down, OE\ should be tied to VCC through a pullup resistor; the minimum value of the resistor is determined by the current-sinking capability of the driver.
This device is fully specified for partial-power-down applications using Ioff. The Ioff circuitry disables the outputs, preventing damaging current backflow through the device when it is powered down.
您可能會感興趣的類似產品
功能與所比較的裝置相似
技術文件
類型 | 標題 | 日期 | ||
---|---|---|---|---|
* | Data sheet | SN74LV374A-EP datasheet (Rev. A) | 2004年 5月 11日 | |
* | VID | SN74LV374A-EP VID V6203663 | 2016年 6月 21日 | |
Application note | Power-Up Behavior of Clocked Devices (Rev. B) | PDF | HTML | 2022年 12月 15日 |
設計與開發
如需其他條款或必要資源,請按一下下方的任何標題以檢視詳細頁面 (如有)。
封裝 | 針腳 | CAD 符號、佔位空間與 3D 模型 |
---|---|---|
TSSOP (PW) | 20 | Ultra Librarian |
訂購與品質
- RoHS
- REACH
- 產品標記
- 鉛塗層/球物料
- MSL 等級/回焊峰值
- MTBF/FIT 估算值
- 材料內容
- 認證摘要
- 進行中持續性的可靠性監測
- 晶圓廠位置
- 組裝地點