SLUAAA2 March 2021 LM25101 , LM5101A , LM5101B , LM5101C , LM5108 , UCC27200 , UCC27200-Q1 , UCC27201 , UCC27201A , UCC27201A-Q1 , UCC27210 , UCC27211 , UCC27211A , UCC27211A-Q1 , UCC27212 , UCC27212A-Q1 , UCC27282 , UCC27282-Q1 , UCC27284 , UCC27284-Q1 , UCC27288 , UCC27289
This tech note explains how to evaluate the gate drive strength (peak output current) of different gate drivers, factors affecting the peak source and sink current, and how it affects the performance of the system.
Gate drivers are used to drive power switches such as MOSFET, IGBT, and GaN, mostly in circuits where controllers are not capable of directly driving these power switches due to lack of peak source and sink current. Most gate driver datasheets specify typical drive current capability in a simple manner as shown in table below.
PARAMETER | CONDITION | MIN | TYP | MAX |
---|---|---|---|---|
IPeak pull-up | VO = 0V | 1.6A | ||
IPeak pull-down | VO = 12V | 1.6A |
This is helpful for general understanding, but comparing two or more gate drivers only based on these typical values may not yield optimum system performance or even optimum cost of the design. It is important to note at what test condition this peak current is specified. Some gate drivers yield higher typical drive current at higher bias voltage. Thus, a gate driver that is specified as 2.5A at 12V cannot be compared directly with a gate driver that specifies 3.5A at 16V. It should also be noted that the switching losses will increase with higher bias voltage, and thus even though the drive current is higher, the system efficiency may reduce.
Power supply design engineers need minimum and maximum values of most parameters across the operating temperature range to optimize their designs. When drive current is specified as a typical value, the RDS(on) of the output stage of the gate driver may be used to estimate drive current variation and may also be used to compare multiple gate drivers. When comparing RDS(on), care should be taken that the test conditions are the same. RDS(on) is either specified directly or can be derived from the output voltage and test current specification as RDS(on) = VO / IO, from the valuse show in the table below. Here it should be noted that only two same types of output structures can be compared this way.
PARAMETER | CONDITION | MIN | TYP | MAX |
---|---|---|---|---|
VOL, Low level output | IO = 100mA | 0.1V | 0.4V | |
VOH, High level output | IO = 100mA | 0.1V | 0.4V |
Similar to bias voltage, the ambient temperature also affects the drive current of the gate driver. To understand and optimize the system performance it is also important to evaluate the output voltage variation across bias supply and across temperature. As can be seen from Figure 1, RDS(ON) of the output stage of the UCC27282 does not get affected by bias voltage irrespective of the operating temperature. It means that even at lower bias voltage the drive current capability does not change significantly. Good drive current capability at lower bias voltage results in reduced switching losses and therefore better efficiency.
Psw = Vbias x Qg x Fsw
Where,
Psw = Gate driver switching loss per channel
Qg = Total gate charge of power MOSFET
Fsw = Power stage switching frequency
Good drive strength at lower bias voltage also enables increase in switching frequency of the power stage, which in-turn will reduce the size, weight, and cost of magnetics in the system.
As mentioned earlier, the primary purpose of the gate driver is, to turn-on and turn-off the power device efficiently. The direct measure of this capability is the rise and fall time specification of the gate driver. Therefore, when comparing multiple gate drivers, it is necessary to compare this specification more so than to compare the typical peak pull-up and pull-down current specification. The test condition needs to be the same for all the gate drivers being compared.
In summary, design engineers need various factors to compare multiple gate drivers' drive strength. These factors are type of switching power device, gate charge of the power device, external gate resistor, test conditions, bias voltage, and operating temperature.
Device | Interlock | Enable | Diode | UVLO |
---|---|---|---|---|
UCC27282 | Yes | Yes | Yes | 5V |
UCC27284 | No | Yes | Yes | 5V |
UCC27288 | No | No | No | 8V |
UCC27289 | No | No | Yes | 8V |
TI PROVIDES TECHNICAL AND RELIABILITY DATA (INCLUDING DATASHEETS), DESIGN RESOURCES (INCLUDING REFERENCE DESIGNS), APPLICATION OR OTHER DESIGN ADVICE, WEB TOOLS, SAFETY INFORMATION, AND OTHER RESOURCES “AS IS” AND WITH ALL FAULTS, AND DISCLAIMS ALL WARRANTIES, EXPRESS AND IMPLIED, INCLUDING WITHOUT LIMITATION ANY IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE OR NON-INFRINGEMENT OF THIRD PARTY INTELLECTUAL PROPERTY RIGHTS. |
These resources are intended for skilled developers designing with TI products. You are solely responsible for (1) selecting the appropriate TI products for your application, (2) designing, validating and testing your application, and (3) ensuring your application meets applicable standards, and any other safety, security, or other requirements. These resources are subject to change without notice. TI grants you permission to use these resources only for development of an application that uses the TI products described in the resource. Other reproduction and display of these resources is prohibited. No license is granted to any other TI intellectual property right or to any third party intellectual property right. TI disclaims responsibility for, and you will fully indemnify TI and its representatives against, any claims, damages, costs, losses, and liabilities arising out of your use of these resources. |
TI’s products are provided subject to TI’s Terms of Sale (www.ti.com/legal/termsofsale.html) or other applicable terms available either on ti.com or provided in conjunction with such TI products. TI’s provision of these resources does not expand or otherwise alter TI’s applicable warranties or warranty disclaimers for TI products. |
Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265
Copyright © 2020, Texas Instruments Incorporated |