AFE5832LP

現行

具有 18.5mW/通道功率、LVDS 介面和被動 CW 混頻器的低功耗 32 通道超音波 AFE

產品詳細資料

Device type Receiver Number of input channels 32 Active supply current (typ) (mA) 55 Operating temperature range (°C) 0 to 85 Interface type LVDS Features Analog Front End (AFE) Rating Catalog
Device type Receiver Number of input channels 32 Active supply current (typ) (mA) 55 Operating temperature range (°C) 0 to 85 Interface type LVDS Features Analog Front End (AFE) Rating Catalog
NFBGA (ZAV) 289 225 mm² 15 x 15
  • 32-Channel AFE for Ultrasound Applications:
    • LNA, Attenuator, LPF, ADC, and CW Mixer
    • Digital Time Gain Compensation (DTGC)
    • Total Gain Range: 0 dB to 48 dB
  • Low-Noise Amplifier (LNA) With Programmable Gain:
    • Low Current Noise of 1pA/rtHz
    • Gain: 21 dB, 18 dB, and 15 dB
    • Linear Input Range: up to 700 mVPP
  • Programmable Attenuator (ATTEN):
    • Attenuation Range (Steps of 0.125 dB):
      0 to 36 dB
    • Digital TGC Engine
  • Programmable Gain Amplifier (PGA):
    • Gain: 21 dB, 24 dB, and 27 dB
  • Third-Order, Linear-Phase, Low-Pass Filter (LPF):
    • Cut-off Frequency From 10 MHz to 25 MHz
  • 16 ADCs Converting at 12-Bit, 80 MSPS or 10-Bit, 100 MSPS:
    • Each ADC Converts Two Sets of Inputs at Half Rate
    • 12-Bit Mode: 72-dBFS SNR
    • 10-Bit Mode: 61-dBFS SNR
  • TGC Mode Power :
    • Lowest Power of 18.5 mW/Ch in Low Power Mode, 4 nV/rtHz, 10-Bit, 20 MSPS, LVDS (2x rate)
    • 27.8 mW/Ch at 3 nV/rtHz in Low Noise Mode at 12-Bit, 40 MSPS
    • 24.4 mW/Ch at 4 nV/rtHz in Low Power Mode at 12-Bit, 40 MSPS
  • Excellent Device-to-Device Gain Matching:
    • ±0.5 dB (Typical)
  • Harmonic Distortion: –55 dBc level
  • Fast and Consistent Overload Recovery
  • Continuous Wave (CW) Path With:
    • Low Close-In Phase Noise of –148 dBc/Hz at 1-kHz Frequency Offset off 5-MHz Carrier
    • Power Consumption With No Signal: 10 mW/Ch
    • Phase Resolution: λ/16
    • 12-dB Suppression on Third and Fifth Harmonics
  • LVDS Interface with a Speed Up to 1-Gbps
  • Small Package: 15-mm × 15-mm NFBGA-289
  • 32-Channel AFE for Ultrasound Applications:
    • LNA, Attenuator, LPF, ADC, and CW Mixer
    • Digital Time Gain Compensation (DTGC)
    • Total Gain Range: 0 dB to 48 dB
  • Low-Noise Amplifier (LNA) With Programmable Gain:
    • Low Current Noise of 1pA/rtHz
    • Gain: 21 dB, 18 dB, and 15 dB
    • Linear Input Range: up to 700 mVPP
  • Programmable Attenuator (ATTEN):
    • Attenuation Range (Steps of 0.125 dB):
      0 to 36 dB
    • Digital TGC Engine
  • Programmable Gain Amplifier (PGA):
    • Gain: 21 dB, 24 dB, and 27 dB
  • Third-Order, Linear-Phase, Low-Pass Filter (LPF):
    • Cut-off Frequency From 10 MHz to 25 MHz
  • 16 ADCs Converting at 12-Bit, 80 MSPS or 10-Bit, 100 MSPS:
    • Each ADC Converts Two Sets of Inputs at Half Rate
    • 12-Bit Mode: 72-dBFS SNR
    • 10-Bit Mode: 61-dBFS SNR
  • TGC Mode Power :
    • Lowest Power of 18.5 mW/Ch in Low Power Mode, 4 nV/rtHz, 10-Bit, 20 MSPS, LVDS (2x rate)
    • 27.8 mW/Ch at 3 nV/rtHz in Low Noise Mode at 12-Bit, 40 MSPS
    • 24.4 mW/Ch at 4 nV/rtHz in Low Power Mode at 12-Bit, 40 MSPS
  • Excellent Device-to-Device Gain Matching:
    • ±0.5 dB (Typical)
  • Harmonic Distortion: –55 dBc level
  • Fast and Consistent Overload Recovery
  • Continuous Wave (CW) Path With:
    • Low Close-In Phase Noise of –148 dBc/Hz at 1-kHz Frequency Offset off 5-MHz Carrier
    • Power Consumption With No Signal: 10 mW/Ch
    • Phase Resolution: λ/16
    • 12-dB Suppression on Third and Fifth Harmonics
  • LVDS Interface with a Speed Up to 1-Gbps
  • Small Package: 15-mm × 15-mm NFBGA-289

The AFE5832LP is a highly integrated, analog front-end (AFE) solution specifically designed for portable ultrasound systems where high performance, low power, and small size are required.

The device is realized through a multichip module (MCM) with two dies: 1 VCA die and 1 ADC die. The VCA die has 32 channels that interface with the 16 channels of the ADC die. Each ADC channel alternately converts an odd and an even VCA channel.

Each channel in the VCA die can be configured in either of two modes: time-gain-compensation (TGC) mode or continuous wave (CW) mode. In the TGC mode, each channel includes a low-noise amplifier (LNA), a programmable attenuator (ATTEN), a programmable gain amplifier and a third-order, low-pass filter (LPF). The LNA gain is programmable to 21 dB, 18 dB, or 15 dB. The ATTEN supports an attenuation range of 0 dB to 36 dB, with digital control for the attenuation. The PGA provides gain options from 21 dB to 27 dB in steps of 3 dB. The LPF cutoff frequency can be set between 10 MHz and 25 MHz to support ultrasound applications with different frequencies. In the CW mode, the output of the LNA goes to a low-power passive mixer with 16 selectable phase delays. Different phase delays can be applied to each analog input signal to perform an on-chip beamforming operation. A harmonic filter in the CW mixer suppresses the third and fifth harmonic to enhance the sensitivity of the CW Doppler measurement.

The 16 channels of the ADC die can be configured to operate with a resolution of 12 bits or 10 bits. The ADC resolution can be traded off with conversion rate and can operate at maximum speeds of 80 MSPS and 100 MSPS at 12-bit and 10-bit resolution, respectively. Because each ADC alternately converts two VCA channels, the resulting maximum sample rate of each of the 32 channels of the AFE is 40 MSPS and 50 MSPS in the 12-bit and 10-bit modes, respectively. The ADC is designed to scale its power with sampling rate. The output interface of the ADC comes out through a low-voltage differential signaling (LVDS), which can easily interface with low-cost field-programmable gate arrays (FPGAs).

A very low-power AFE solution makes it suitable for system with strict battery-life requirement.

The AFE is available in a 15 mm × 15 mm 289-pin NFBGA package and is pin-compatible with the AFE5832 family.

The AFE5832LP is a highly integrated, analog front-end (AFE) solution specifically designed for portable ultrasound systems where high performance, low power, and small size are required.

The device is realized through a multichip module (MCM) with two dies: 1 VCA die and 1 ADC die. The VCA die has 32 channels that interface with the 16 channels of the ADC die. Each ADC channel alternately converts an odd and an even VCA channel.

Each channel in the VCA die can be configured in either of two modes: time-gain-compensation (TGC) mode or continuous wave (CW) mode. In the TGC mode, each channel includes a low-noise amplifier (LNA), a programmable attenuator (ATTEN), a programmable gain amplifier and a third-order, low-pass filter (LPF). The LNA gain is programmable to 21 dB, 18 dB, or 15 dB. The ATTEN supports an attenuation range of 0 dB to 36 dB, with digital control for the attenuation. The PGA provides gain options from 21 dB to 27 dB in steps of 3 dB. The LPF cutoff frequency can be set between 10 MHz and 25 MHz to support ultrasound applications with different frequencies. In the CW mode, the output of the LNA goes to a low-power passive mixer with 16 selectable phase delays. Different phase delays can be applied to each analog input signal to perform an on-chip beamforming operation. A harmonic filter in the CW mixer suppresses the third and fifth harmonic to enhance the sensitivity of the CW Doppler measurement.

The 16 channels of the ADC die can be configured to operate with a resolution of 12 bits or 10 bits. The ADC resolution can be traded off with conversion rate and can operate at maximum speeds of 80 MSPS and 100 MSPS at 12-bit and 10-bit resolution, respectively. Because each ADC alternately converts two VCA channels, the resulting maximum sample rate of each of the 32 channels of the AFE is 40 MSPS and 50 MSPS in the 12-bit and 10-bit modes, respectively. The ADC is designed to scale its power with sampling rate. The output interface of the ADC comes out through a low-voltage differential signaling (LVDS), which can easily interface with low-cost field-programmable gate arrays (FPGAs).

A very low-power AFE solution makes it suitable for system with strict battery-life requirement.

The AFE is available in a 15 mm × 15 mm 289-pin NFBGA package and is pin-compatible with the AFE5832 family.

下載 觀看有字幕稿的影片 影片
索取更多資訊

提供完整產品規格表和其它設計資源。立即索取

技術文件

star =TI 所選的此產品重要文件
找不到結果。請清除您的搜尋條件,然後再試一次。
檢視所有 4
類型 標題 日期
* Data sheet AFE5832LP 32-Channel Ultrasound AFE With 18.5-mW/Channel Power, 4-nV/√Hz, 12-Bit, 40-MSPS or 10-Bit, 50-MSPS Output and Passive CW Mixer datasheet PDF | HTML 2018年 12月 12日
Application note Designing High Voltage Power Supply for Ultrasound Smart Probes (Rev. A) PDF | HTML 2023年 5月 16日
Application note Smart Ultrasound Probes Solution 2019年 7月 19日
Application brief AFE5832LP and AFE5832 Ultrasound AFE for Ultra-Portable Applications 2019年 1月 4日

設計與開發

如需其他條款或必要資源,請按一下下方的任何標題以檢視詳細頁面 (如有)。

開發板

AFE5832LPEVM — 具有 LVDS 介面和被動式 CW 混頻器的 AFE5832LP 低功耗 32 通道超音波 AFE 評估模組

AFE5832LP 評估模組 (EVM) 是用於評估 AFE5832LP 產品的平台。AFE5832LP 為一專為超音波系統設計,並要求高性能和小體積的高度整合類比前端 (AFE) 解決方案。此裝置整合了完整的時間增益控制 (TGC) 影像路徑和連續波都卜勒 (CWD) 路徑。32 通道裝置可實現各種功耗與雜訊組合,以發揮最佳系統效能。因此,AFE5832LP 是適用於高階和可攜式系統的超音波 AFE 解決方案。

模擬型號

AFE5832LP IBIS Model

SBAM409.ZIP (49 KB) - IBIS Model
模擬工具

PSPICE-FOR-TI — PSpice® for TI 設計與模擬工具

PSpice® for TI is a design and simulation environment that helps evaluate functionality of analog circuits. This full-featured, design and simulation suite uses an analog analysis engine from Cadence®. Available at no cost, PSpice for TI includes one of the largest model libraries in the (...)
封裝 針腳 CAD 符號、佔位空間與 3D 模型
NFBGA (ZAV) 289 Ultra Librarian

訂購與品質

內含資訊:
  • RoHS
  • REACH
  • 產品標記
  • 鉛塗層/球物料
  • MSL 等級/回焊峰值
  • MTBF/FIT 估算值
  • 材料內容
  • 認證摘要
  • 進行中持續性的可靠性監測
內含資訊:
  • 晶圓廠位置
  • 組裝地點

建議產品可能具有與此 TI 產品相關的參數、評估模組或參考設計。

支援與培訓

內含 TI 工程師技術支援的 TI E2E™ 論壇

內容係由 TI 和社群貢獻者依「現狀」提供,且不構成 TI 規範。檢視使用條款

若有關於品質、封裝或訂購 TI 產品的問題,請參閱 TI 支援。​​​​​​​​​​​​​​

影片